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A class of fractional differential equations is investigated in this paper. By the 
use of modified Remann-Liouville derivative and the tanh-sech method, the exact 
bright soliton solutions for the space-time fractional equal width are obtained.  
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Introduction 

In recent years, fractional calculus is used to study differentiation and integration of 

arbitrary order and is used in many areas such as fluid dynamics, turbulence, image pro-

cessing, finance, non-linear control theory, astrophysics, stochastic dynamical systems, plas-

ma physics, non-linear biological systems, nanotechnology, and textile engineering. A newly 

developed method has drawn the attention of many researchers in science and engineering for 

the exact solution of a PDE, and many actual problems can be modeled by differential equa-

tions involving the derivatives of fractional order. According to the best possible method of 

equation, the exact solutions of most of fractional PDE may be found difficultly. Soliton type 

solutions have great importance in fluid dynamics, propagation of surface waves, and many 

other fields of physics and some engineering fields. Krishan and Biswas [1] has recommended 

an effective ansatz method to find the travel wave solution of space-time fractional modified 

equal width equation. Ansatz methods have been applied to obtain exact solution such as the 

fractional biological population model. In this paper, the exact solutions obtained by tanh-

sech method are compared with dark soliton solution obtained by using the ansatz method for 

space-time fractional equal width equation.  

This paper also bases on the homogeneous balance method which is a powerful 

technique for finding exact solutions of fractional PDE introduced by Zhang and Zhang [2]. 

Various methods for the exact solutions of fractional PDE can be found in [3-7]. As a result, 

many effective methods have been established to solve PDE exactly. For example, lumped 

Galerkin methods based on B-splines, and also these methods were implemented for fraction-

al differential-difference equations in quoted equation [8-10]. 

In this paper, we aim to get the exact solution of the space-time fractional equal 

width equation. The fractional equal width equation is transformed to ODE by the method of 

fractional complex transform and some useful formulas of modified Riemann-Liouville deriv-

ative.  
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Fractional derivative and integration 

Recently, several effective methods were utilized to resolve the derivatives of frac-

tional order. Riemann-Liouville fractional derivative has introduced to look for solutions of 

PDE. Jumarie has obtained some useful formulas by proposing a modified Riemann-

Liouvville derivative. In order to investigate space-time fractional modified equal width equa-

tion, we give some properties and formula of the modified Riemann-Liouville derivative 

which is used further in this paper. Assume that f : R→R, x→f(x) denotes a continuous func-

tion. The Riemann-Liouville derivative is introduced in [4]. 
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Some properties of Riemann-Liouville fractional derivative are defined: 
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Applications 

Consider the following fractional PDE of the type: 
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where x and t are two independent variables, u – an unknown function, Dt u
and Dx u

– the 

Riemann-Liouville of fractional derivatives of u. Using the fraction complex transform which 

is proposed by Li and He [11]. 
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where k is non-zero arbitrary constant, eq. (7) can be converted to an integer order PDE [12]. 

The chain rule can be calculated: 
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where σx and σt are called the sigma indexes [13]. Without loss of generality we can take   

σx = σx = l, where l is constant. 

Substitute eq. (8) into eq. (7) and use chain rule defined by eq. (9), the eq. (7) can be 

transformed into an ODE equation of the following form: 
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where G is a polynomial in the variable U and its derivatives. 

We consider the following fractional modified equal width equation [14]: 

 2 3D D D 0t x xxtu u u u   + − =  (11) 

where α is a parameter describing the order of the fractional space and time derivative, ε and δ 

are real parameters. Among them when α = 1, eq. (11) is called the modified equal width 

equation. This equation has been solved by Raslan [15] with the first integral method. Addi-

tionally, Taghizadeh and Mirzazaden [16] and his colleagues have implemented the modified 

simple equation method to get the exact solutions of the equal width equation. 

By using fractional complex transform: 
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eq. (11) can be converted to: 
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where U′ = dU/dξ. By once integration and setting the constants of integration to zero we get: 
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into eq. (14) and balancing U″ with U3 of (14), we can get n = 1. Hence, we have the follow-

ing ansatz: 

 0 1( )U a a Y = +  (15) 

where Y = tanh(ξ). 
We also have: 
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Submitting eq. (15) along with eq. (16) into eq. (14), and collecting all terms of the 

same power of Yi (i = 0, 1, 2, …, n) and simultaneously equating to zero, we obtain the fol-

lowing system of non-linear algebraic equation: 
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Finally, we can obtain: 
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Substituting eq. (17) into eq. (15), we get: 
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where δ < 0 and k/ε < 0. 
In order to solve the proposed problem, we make the following hypothesis. This 

method depends on Mizazadeh [17] and Guner [18]. Substituting eq. (9) with eq. (19) and eq. 

(20) into eq. (11), it can reduce into an ODE: 
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where the parameters A and k are the free parameters and c – the velocity of the solution. The 

exponent p will be determined later. 

It is calculated by the derivative: 
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and 3 3 3( ) tanh pU A =  (23) 

Substituting eqs. (20)-(23) into eq. (19), we obtain: 
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and equating the exponents p + 2 and 3p, we have: 

 p = 1 (25) 

By balancing the coefficient of tanh3pξ and tanhp+2ξ terms in eq. (24), we can get: 

 6A l kc=   (26) 

Meanwhile, setting the coefficients of tanhpξ terms in eq. (24) to zero, we can ob-

tain: 
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The exact solution of the space-time fractional eq. (19) is given by: 
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From eqs. (26) and (27), we know δ < 0 and kc < 0. 

Assume that eq. (19) has a solution of the form: 
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where the parameters A and k are free parameters. The exponent p will be determined later. 

Substituting eq. (29) with eq. (30) into eq. (19), we get: 

 
2

2 2

2 2 2

d ( ) 1 1 1

d cosh cosh coshp p p

U
Ap Ap Ap



   + +
= − −  (31) 

and 3 3

3

1
( )

cosh p
U A


=  (32) 

Substituting eqs. (29)-(32) and eq. (30) into eq. (19): 
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and equating the exponents 3p and p + 2 leads to: 

 p = 1 (34) 

By balancing the coefficients of 1/cosh3pξ and 1/coshp+2ξ terms in eq. (33): 
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 Therefore, we obtain the exact solution of the space-time eq. (11): 
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Conclusions 

In this paper, the PDE of space-time fractional order is studied based on symbolic 

computation method of fractional equation. We have obtained the exact solution of fractional 

differential equations by the tanh-sech method. The results show that this method is accurate 

and effective, and it can be used for many other non-linear fractional differential equations 

with real world applications. 
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