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The motion of non-Newtonian fluid with heat and mass transfer through porous 
medium past a shrinking plate is discussed. The fluid obeys Casson model, heat 
generation, viscous dissipation, thermal diffusion, and chemical reaction are taken 
in our considered. The motion is modulated mathematically by a system of non- 
-linear PDE which describe the continuity, momentum, heat, and mass equations. 
These system of non-linear equations are transformed into ODE by using a suitable 
transformations. These equations are solved numerically by using MATHEMAT-
ICA package. The numerical distributions of the velocity, temperature, and con-
centration are obtained as a functions of the physical parameters of the problem. 
Moreover, the effects of these parameters on these solutions are discussed numer-
ically and illustrated graphically through some figures. It is clear that these pa-
rameters play an important role to control the velocity, temperature, and concen-
tration of the fluid motion. It is found that the fluid velocity deceases with the in-
creasing of electric parameter while it increases as the magnetic Hartman param-
eter increases, these results is good agreement with the physical situation. Also, 
the fluid temperature decreases and increases as the Prandtl number and Eckert 
number increases, respectively. At least the fluid concentration decreases with both 
of Soret and Schimdt numbers.  

Key words: electromagnetichydrodynamic, Casson fluid, heat and mass transfer, 
porous medium 

Introduction 

The study of non-Newtonian fluid has gained a big importance due to it’s applications 

such as in industry and engineering. Due to the sub-stances contained like fibrinogen, protein 

and the blood Cell’s chain structure, the human blood can be classified as Casson fluid. 

Pramanik [1] investigated the properties of heat transfer of Casson fluid through thermal radi-

ation and porous medium. The effects of second order slip in a channel on plane Poiseuille 

nanofluid through the influence of Stefan are discovered by Ellahi et al. [2]. Akbar [3] investi-

gated the exact solution of magnetic field effect in an asymmetric channel on peristaltic flow 

of a Casson fluid. Ellahi et al. [4] investigated the 2-D mixed heat transfer and convection flow 
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in ferromagnetic fluid past a stretching sheet. Analysis of non-Newtonian fluid and heat transfer 

through an oscillating vertical plate on an unsteady boundary-layer of a Casson fluid is studied 

by Hussanan et al. [5]. Abou-Zeid [6] studied the motion of incompressible micropolar non- 

-Newtonian nanofluid with heat transfer in asymmetric channel. The unsteady peristaltic mech-

anism with heat and mass transfer of an incompressible micropolar non-Newtonian fluid in  

2-D channel is discussed by El-Dabe and Abou-Zeid [7]. Water base nanofluid flow in a porous 

medium over wavy surface is investigated by Hassan et al. [8]. Abou-Zeid [9] investigated the 

MHD non-Newtonian nanofluid flow through a porous medium in eccentric annuli with peri-

stalsis. Jeffery nanofluid peristaltic flow through a vertical tube is studied by El-Dabe et al. 
[10]. 

Heat and mass transfer are kinetic processes that may occur and be studied separately 

or jointly. Studying them a part is simpler, but both processes are modeled by similar mathe-

matical equations in the case of diffusion and convection. Besides heat and mass transfer must 

be jointly considered in some cases like evaporative cooling and ablation. Combined mass and 

heat transfer problems have an important in many processes and it is notable in recent years 

such as evaporation on a water surface, drying, process of the connection with thermal recovery, 

chemical industry. Mass and heat transfer occurs at the same time, for example in the power 

industry, it’s a way of generating energy in which the energy is extracted directly from a moving 

fluid. There are wide industrial applications of melting heat transfer such as welding and magma 

solidification, casting, thawing of frozen ground and perma-frost melting. Kataria and Patel 

[11] investigated heat and mass transfer characteristics in the unsteady MHD Casson fluid flow 

past over an oscillating vertical plate. The effects of heat and mass transfer on MHD Eyring-

Powell fluid under long-wavelength approximation and low Reynolds is investigated by Shaa-

ban and Abou-Zeid [12]. Ellahi et al. [13] discussed mixed heat transfer and convection bound-

ary-layer flow past a vertical slender cylinder. Raju et al. [14] discussed the heat and mass 

transfer behavior of Casson fluid past an exponentially permeable stretching surface in presence 

of thermal radiation. Shehzad et al. [15] investigated the effect of mass transfer in MHD flow 

of a Casson fluid over a porous stretching sheet. The motion of non-Newtonian nanofluid over 

a stretching sheet through a non-Darcy porous medium with heat and mass transfer is studied 

by El-Dabe et al. [16]. 

The MHD represent an interdictionary science such as electro-chemistry, electro-stat-

ics, thermo-physics, and hydro-dynamics. Electrode configuration plays an important role to 

find the efficiency of the electrohydrodynamic (EHD) process. Alamir et al. [17] studied the 

effects of mass transfer on MHD subjected to the heat transfer towards stretching cylinder. The 

MHD thermal boundary-layer of Cu-water nanofluids past an exponentially permeable stretch-

ing plate is discussed by Yousif et al. [18]. Hassan et al. [19] investigated convective mass and 

heat transfer of nanofluid through non-magnetic and magnetic nanomaterials under the mag-

netic influence. Chirkov et al. [20] studied the effect of liquid conductivity on the efficiency of 

EHD heat exchanger with charge formed by injection. The EHD flows and heat transfer in the 

blade-plane electrode system is investigated by Kuzko [21]. The heat transfer effects on MHD 

boundary-layer flow over non-isothermal stretching sheet is discussed by Abou-Zeid [22]. The 

heat characteristic with the non-darecin is studied by Pal and Mondal [23] under the effect of 

ohmic dissipation and thermal radiation.  

The main aim of this work is to extend the work of Pal and Mondal [23] in the case 

of non-Newtonian fluid motion with heat and mass transfer, and include the viscous dissipation, 

heat generation, thermal diffusion, and chemical reaction effects. Then the boundary-layer mo-

tion of Casson incompressible, conducting fluid with heat and mass transfer over a horizontal 
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plate is investigated. The system is stressed by a uniform magnetic field and uniform electric 

field. A heat generation with radiation and chemical reaction are taken in consideration. This 

motion is modulated mathematically by a system of non-linear PDE which transformed into 

non-linear ODE by using suitable transformation. This system is solved numerically subjected 

to the appropriate boundary conditions to obtain the velocity, temperature, and concentration 

fields. The influences of the physical parameters of the problem on these solutions are discussed 

numerically and illustrated graphically through a set of figures. The ready analysis can render 

as a model which may support in comprehension the mechanics of physiological flows. Physi-

cally, our model corresponds to the transmission of the gastric juice in the small intestine. 

Mathematical formulations 

Consider a non-Newtonian electrically conducting incompressible fluid flowing over 

a shrinking sheet under the magnetic and electric fields as shown in fig. 1. Choose Cartesian 

co-ordinates (x, y, z), where x is along the sheet, 

y is perpendicular to it, and z is normal to x-y 

plate. We know from Ohm law that 

= ( )J E V B    and Maxwell equations 
= 0B  and = 0.E  The external applied 

magnetic field 0= (0, ,0)B B  while the electric 

field 0= (0,0, ).E E  

The rheological of state for an incompress-

ible and iso-tropic flow of a Casson fluid is as 

follows [24]:  
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where π is the product of the component of deformation rate = ,ij ije e πc – a critical value of 

this product based on non-Newtonian model, μB – the plastic dynamic viscosity of the non-

Newtonian fluid, and py – the yield stress of the fluid. 

The governing boundary-layer equations for momentum, temperature, concentration 

equations can be written as [23]:  

Continuity equation 
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Figure 1. Boundary-layer over shrinking sheet 
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where u and v are the velocity components in the x– and y-directions, ν – the kinematic viscos-

ity, ρ – the density, and k – the permeability of the porous medium. The boundary conditions 

on the velocity are appear under the effect of shrinking surface causing in x-direction: 

 
= ( ) =             = 0     at    = 0

= 0       as            

u U x bx v y

u y




 (3) 

By using the following transformations: 

 = ( ),     = ( ),     =
b

u bxf v b f y   


  (4) 

where f(η) is the dimensionless stream function, and η – the similarity variable. Substitution of 

eq. (3) in eq. (2) we get: 

 2 2
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1
1 = Ha ( )f f ff E f K f
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It is clear that the eq. (5) is third-order non-linear ODE for Casson fluid, if β → ∞ the 

fluid becomes ordinary Newtonian, where K1 = (vbx)/k is the porous parameter, 
2 2

0Ha ( )/B b   – the Hartman number, and 1 0 0= /( )E E B bx  – the local electric parameter. 

The boundary conditions in the non-dimensional form are:  

 (0) = 0,        (0) =1,         ( ) = 0f f f    (6) 

Heat transfer equation 

The equation of heat transfer with thermal radiation, heat generation, ohmic dissipa-

tion, and viscous dissipation is given by: 
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where cp is specific heat at constant pressure, and k – the thermal conductivity. The boundary 

conditions on the temperature can be written:  

 =       as      T T y   (8) 

 =       as      = 0wT T y  (9) 

where Tw stands for shrinking sheet temperature, and T∞ – the temperature far away from the 

shrinking sheet. The thermal radiation heat flux, qr, is given by:  
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where k0 is the mean absorption coefficient, and σ* – the Stefan-Boltzmann constant. We as-

sume that the fluid-phase temperature differences in the flow are sufficient small such that T4 

may be expressed as a linear function of temperature: 

 
4 3 4= 4 3T T T T   (11) 
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We assume that dimensionless temperature variable θ(η) in the form:  

 =
w

T T

T T
 






 (12) 

By substitution of eqs. (10)-(12) in eq. (7) we get the non-dimensional thermal bound-

ary-layer equation: 
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where Pr is Prandtl number [= (ρνcp)/k], Nr – the thermal radiation parameter * 3 2[ (16 )/3 ],T k

and Ec – the Eckert number [=(b2x2)/(cpΔT)]. The boundary condition of eqs. (8) and (9) be-

comes:  

 (0) =1        ( ) = 0    (14) 

Concentration equation 

The equation of concentration with thermal diffusion is given by:  
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where Dm is the coefficient of mass diffusivity, kt – the thermal diffusion ratio, and A – the 

reaction rate constant. The appropriate boundary conditions on the concentration are:  

 = asC C y   (16) 

 = as = 0wC C y  (17) 

Introduce the following quantity:  

 =
w

C C

C C
 






 (18) 

By substitution eq. (18) into eq. (15) we obtain non-dimensional thermal boundary- 

-layer equation:  

 
1

 = Sr
Sc

f        (19) 

where Sc is the Schmidt number (= α/ν), δ  – the chemical reaction [= (ATw)/(Dmkt)], Sr – the 

Soret number [= (Dmkt)/(νΔC)]. The boundary conditions become:  

 (0) =1        ( ) = 0    (20) 

Numerical solutions 

The system of eqs. (5), (13), and (19) are highly non-linear ODE. So, let f = Y1,  

θ = Y4, and ϕ = Y6. 

Hence, eqs. (5), (13), and (19) can be written: 
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where prime denotes to differentiation with respect to η and this system of eqs. (21) subject to 

the boundary conditions: 
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   (22) 

To apply shooting technique we use NAG FORTRAN library, namely, the subroutine 

D02HAF which requires the guessing of starting values of missing initial and terminal condi-

tions. Rung-Kutta-Merson method with variable step size is used in this subroutine in order to 

control the local truncation error, then modified Newton-Raphson technique is applied to make 

successive corrections to the estimated boundary values. The process is repeated iteratively until 

convergence is obtained i. e. until the absolute values of the difference between every two suc-

cessive approximations of the missing conditions is less than ε (in our case ε is taken = 10–6). 

Discussion 

Figures 2 and 3 display the change of the velocity vs. the dimensionless co-ordinate, 

η, for several values of Hartmann number, and the electric field parameter, E1, respectively. It 

is seen, from these figures that the velocity increases with the increase of Hartmann number, 

this due to the fact that the effect of the magnetic field on electrically conductive fluid creates 

a drag force and develops the force known as Lorentz force which reduces the fluid motion, 

whereas it decreases as E1 increases. For small values of E1, and large values of Hartmann 

number, the relation between f ′ and η is approximately a straight line. The behavior of f ′ for 

various values of K1 is exactly similar to the behavior of f ′ for various values of Hartmann 

number given in fig. 2. The results which are obtained in fig. 2, are in agreement with those 

which are presented by Abou-Zeid et al. [25, 26]. 

 

Figure 2. The velocity component is plotted  
against η for the variation value of Ha 

 

Figure 3. The velocity component is plotted 
against η for the variation value of E1 
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Figures 4 and 5 represent the behaviors of the temperature distribution, θ, with the 

dimensionless co-ordinate, η, for different values of Eckert number and Prandtl number, re-

spectively. It is observed from fig. 4 that the temperature distribution increases with the increase 

of Eckert number. The results which are obtained in fig. 4, are in agreement with those which 

are presented by El-Dabe et al. [10], and in fig. 5 the temperature decreases as Prandtl number 

increases. The thermal boundary-layer thickness may be reduced by increasing
 
Prandtl number.  

 
Figure 4. The temperature component is plotted 
against η for the variation value of Ec 

 
Figure 5. The temperature component is plotted 
against η for the variation value of Pr 

In heat transfer problems, the Prandtl number rule the comparative thickening of the momentum 

and thermal boundary-layer. It is also noted that the difference of the temperature distribution 

for different values of Prandtl number becomes, and for large values of Prandtl number the 

relation between θ and η is approximately linear. The results which are obtained in fig. 5, are 

in agreement with those which are presented by Pramanik [1]. Moreover, While, for different 

values of Eckert number the relation between θ and η is a parabolic, i. e. as η increases, θ in-

creases till a maximum value after which it decreases. The following explains the result in fig. 

4, the effect of the source and dissipation temperature is to increase the rate of energy transport 

to the fluid and, accordingly, the temperature of the fluid. 

Figures 6 and 7 show the behavior of the concentration, ϕ, with the dimensionless co-

ordinate, η, for various values of Schmidt and Soret numbers, respectively. It has been noticed 

that the concentration increases with the decreases of both Schmidt and Soret numbers. It is 

also noted that for each value of both Schmidt and Soret numbers, there exists a minimum value 

of ϕ which increases by increasing both Schmidt and Soret numbers, and all minimum values 

occur at η  1.2. The result in fig. 6 is due to the increase of Schmidt number is means a de-

creases of molecule diffusion. Hence, the concentration of the space is lower for small values 

 
Figure 6. The concentration component is plotted 

against η for the variation value of Sc 

 
Figure 7. The concentration component is 

plotted against η for the variation value of Sr 
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of Schmidt number and higher for large values of Schmidt number. The results which are ob-

tained in fig. 6, are in agreement with those which are presented by Kataria and Patel [11]. 

Table 1 presents a comparison between the numerical results of present study and 

those obtained by Pal and Mondal [23] for Nusselt number –θ(0) for various values of both 

Prandtl and Hartmann numbers. It can be concluded from tab. 1 that the present results are in a 

good agreement with those obtained by Pal and Mondal [23]. 

Table 1. Verification of the model 

Pr Ha –θ′(0) in the present work –θ′(0) in the work of Pal and Mondal [23] 

1 
2 
3 

1 
1 
1 

1.19268 
1.94141 
2.79731 

1.33333 
1.99999 
2.50971 

3 
3 
3 

0.6 
0.8 
1 

1.34502 
1.33632 
1.25013 

1.377062 
 

1.335962 

Conclusion 

This study extends the work of Pal and Mondal [23] to include the non-Newtonian 

fluid, modified viscous dissipation as well as equation of concentrate, heat generation, the equa-

tion of concentration with thermal diffusion and chemical reaction. The heat and mass transfer 

characteristics and MHD non-Darcy boundary-layer flow in an incompressible electrically flow 

over a linear shrinking sheet are studied by MATHEMATICAL. Highly non-linear of velocity, 

temperature and concentrate equations are converted into ODE by using suitable transfor-

mations. This system of equations is solved numerically by applying NDSolve command in 

MATHEMATICA package. The effects of Eckert number, Prandtl number, Hartmann number, 

local electric parameter, Schmidt number, and Soret number on temperature, velocity, and con-

centration are discussed through numerically and depicted graphically. The obtained results can 

be outlined as follows. 

 By increasing Hartmann number the velocity increases while it decreases as E1 increases. 

 The temperature distribution increases with the increase of Eckert number, whereas it de-

creases as Prandtl number increases. 

 The concentration increases with the decreases of both Schmidt and Soret numbers. 
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