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In this paper, Lie algorithm is used to classify the classical symmetry of a general 
diffusion-convection equation. The solution process is elucidated for different 
conditions, and the obtained symmetries can be used to study the solution proper-
ties of the diffusion-convection equation.  
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Introduction 

Diffusion-convection equations are widely studied in thermal science, however, 

their symmetries were rarely appeared in open literature. Symmetries of PDE play an im-

portant role in thermal science, mechanics, mathematics, and physics, because symmetries can 

provide important information on the solution properties [1-5], conservation laws [6, 7], and 

variational principle or Hamilton principle [8-11]. Finding symmetries of an PDE has been 

caught much attention in various fields. 

Consider the following PDE: 

2( , , , , , ) 0kF x u u u u   = (1) 

where 1 2( , , , )nx x x x= , u denotes the coordinate corresponding to its dependent variable. 

The one-parameter Lie group of point transformations: 
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leaves an invariant of eq. (1) , i. e., a point symmetry, if and only if its kth extension leaves an 

invariant surface (1). 
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be the infinitesimal generator of the Lie group of point transformations (2). 
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be the kth-extended infinitesimal generator of (3). Then one-parameter Lie group of point 

transformations (2) is admitted by PDE (1), if and only if:  

 
( ) 2 2( , , , , , ) 0, when ( , , , , , ) 0k k kX F x u u u u F x u u u u   =    =  (5) 

In this paper, symmetry analysis of the diffusion-convection equations is considered, 

the problems of determining symmetry requires to solve an over-determined linear PDE (de-

termining equations), and the solution process is complex and requires some special technol-

ogies, which will be addressed in the forthcoming section.  

Classical symmetry classification 

Consider the following general class of non-linear diffusion-convection equations in 

the form: 

 ( ) [ ( ) ] ( )t xx xg x u f u u h u u= +  (6) 

which can model a wide variety of phenomena in thermal science, physics, engineering, 

chemistry, and biology. In the case g(x) = 1, eq. (6) describes the vertical 1-D transport of wa-

ter in homogeneous no-deformable porous media. When h(u) = 0, eq. (6) can describe the sta-

tionary motion of a boundary-layer of fluid over a flat plat, and a vortex of incompressible 

fluid in a porous medium for polytropic relations of gas density and pressure. 

Suppose the infinitesimal generator admitted by eq. (6) is: 
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From eq. (5), the determining equations for X are: 
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When h(u) = 0, eq. (6) becomes: 

 ( ) [ ( ) ]t x xg x u f u u=  (9) 

Solving eq. (8), we summarize the results of group classification as follows (c1, c2, 

…, c6 are arbitrary constants in Cases 1 to 6). 
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Case 5. 
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When g(x) = 1, eq. (6) becomes: 

 [ ( ) ] ( )t x x xu f u u h u u= +  (16) 

Solving eq. (8), we summarize the results of group classification as follows  

(c1, c2, …, c6 are arbitrary constants in Cases 1 to 7). 
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Case 2.  
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Conclusions  

In this paper, we use Lie algorithm to determine classical symmetry classification of 

the diffusion-convection equations, the obtained symmetries can be used to study the solution 



 

properties of the diffusion-convection equation as that discussed in [12] and our results can be 

easily extended to fractal calculus [12-17]. 
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