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In this paper, it is considered the problem of estimation of unknown parameters 
of log-Kumaraswamy distribution via Monte-Carlo simulations. Firstly, it is de-
scribed six different estimation methods such as maximum likelihood, approximate 
bayesian, least-squares, weighted least-squares, percentile, and Cramer-von-Mis-
es. Then, it is performed a Monte-Carlo simulation study to evaluate the perfor-
mances of these methods according to the biases and mean-squared errors of the 
estimators. Furthermore, two real data applications based on carbon fibers and 
the gauge lengths are presented to compare the fits of log-Kumaraswamy and other 
fitted statistical distributions.
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Introduction

 Log-Kumaraswamy (LKw) distribution is a special case of log-exponentiated Ku-
maraswamy distribution proposed by Lemonte et al. [1]. They have generated LKw distribution 
by using a log-transform in cumulative distribution function (cdf) of Kumaraswamy (Kw) dis-
tribution suggested by Kumaraswamy [2]. Let Y be a random variable having Kw distribution 
with parameters a and b. The LKw distribution is obtained by X = –log(1 – Y) transformation. 
The cdf, the probability density function (pdf), and hazard rate function (hf):
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where a > 0, b > 0, and x > 0. The LKw(a, b)
 
distribution can be useful in order to model real 

data in areas such as hydrology, engineering, science, medicine, agriculture, etc. 
Some studies on LKw distribution can be listed as follows. Mohammed [3] studied 

inference on the log-exponentiated Kw distribution. Chacko and Mohan [4] investigated the 
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problem of the estimation of parameters for Kw-exponential distribution under progressive 
type-II censoring. Akinsete et al. [5] proposed Kw-geometric distribution. Moreover, Jose and 
Varghese [6] introduced Wrapped LKw distribution. Korkmaz and Genc [7] suggested two-sid-
ed generalized exponential distribution. Korkmaz and Genc [8] introduced a new lifetime dis-
tribution based on a transformation of two sided power variate. The problem of parameter 
estimation for many distributions is very popular. In recent years, there are many extensive 
studies on parameter estimation for various distributions in literature. Ramos and Louzada [9] 
have introduced a new distribution called as the generalized weighted lindley distribution and 
studied different methods of estimation for this distribution. Dey et al. [10] have compared the 
methods of estimation for Nadarajah and Haghighi distribution. Dey et al. [11] have studied 
different estimation methods for Kw distribution. Also, in [12] they estimated the parameters 
of Gompertz distribution using different estimation methods. Ramos et al. [13] have consid-
ered the problem of estimation of parameters for Frechet distribution. Balakrishnan and Kundu 
[14] presented an extensive study including new estimation methods and extensions for Birn-
baum-Saunders distribution. 

The aim of this article is to compare the performances of methods of estimation for 
LKw(a, b) distribution via Monte-Carlo simulations and real data applications. For this reason, 
six different estimation methods such as the maximum likelihood, approximate bayesian, least-
squares, weighted least-squares, percentile and Cramer-von-Mises are considered. 

Estimation methods

Maximum likelihood estimates

Let X1, X2,...,Xn be a random sample taken from LKw(a, b)
 
distribution. The log-like-

lihood function:
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The maximum likelihood estimators (MLE) of unknown parameters are derived by 
maximizing the log-likelihood function in eq. (4). The likelihood equations are also obtained 
from the partial derivatives of log-likelihood function with respect to a and b parameters. These 
derivates are:
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The MLE, âMLE and b^MLE, can be obtained by solving of likelihood equations, in eqs. (5) 
and (6). These non-linear equations can be solved by some numerical methods.

Approximate bayesian estimates 

Let X1, X2,...,Xn be a random sample with size n taken from LKw(a, b) distribution. In 
this study, the independent gamma priors for a and b parameters are used:
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The joint priors and posterior distributions of a and b parameters, are given by, re-
spectively:
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Thus, Bayes estimator (BE) under squared loss function for any function of a and b, 
say u(a, b): 
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where 𝓁(a, b | x) is log-likelihood function, ρ(a, b) – the logarithm of joint prior distribution. It 
is difficult to get the integral presented in eq. (11) in closed form. Some approximate methods 
to get the integrals are used. One of these methods is Tierney Kadane’s approximation method.

Bayes estimates with Tierney and Kadane’s method

Tierney and Kadane’s approximation introduced by Tierney and Kadane [15] to com-
pute integral ratios. In Bayes analysis has been studied by many authors such as Danish and 
Aslam [16], Gencer and Saracoglu [17], Kumar [18], Kinaci et al. [19], Tanis and Saracoglu [20], 
Jung and Chung [21]. Tierney and Kadane approximation can be summarized:
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The BE with Tierney and Kadane approximation of u(a, b) under squared error loss 
function for LKw(a, b):
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where (â 
I*, b^I*) and (â 

I, b^I) maximize I*(â 
I*, b^I*)

 
and I(â 

I, b^I), respectively. The ∑* and ∑ are minus 
the inverse Hessians of I*(â 

I*, b^I*)
 
and I(â 

I, b^I) at (â 
I*, b^I*) and (â 

I, b^I), respectively.
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Least square and weighted least squares estimates

Let X1:n ≤ X2:n ≤... ≤ Xn:n be order statistics of a random sample with n sizes having LKw 
(a, b) distribution. Then, the expected value of the empirical cumulative distribution function (ecdf):
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The least square estimates of a and b, âLSE and b^LSE can be obtained by minimizing 
following eq. (17):
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In this case, âLSE and b^ 
LSE can be obtained via the simultaneously solution of the fol-

lowing system of equations:
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Equations (18) and (19) can be simultaneously solved using some iterative methods. 
The weighted least squared estimators (WLSE) shown with âWLSE and b^WLSE can be obtained by 
minimizing following equation with respect to a and b parameters:
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Percentile estimates

In this subsection, the percentile estimates (PE) of a and b for LKw(a, b) distribution, 
âPE and b^PE are obtained. This estimation method was firstly suggested by Kao [22, 23]. There 
are many studies based on percentile estimation of unknown parameters for various statistical 
distributions. Some of these studies are Gupta and Kundu [24], Alkasabeh and Raqab [25], 
Erisoglu and Erisoglu [26]. The quantile function of LKw (a, b):
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Let xi:n is be value of ith order statistics. The âPE and b^PE can be obtained by minimizing 
the following equation with respect to a and b parameters:



Tanis, C., et al.: Comparisons of Six Different Estimation Methods ... ... 
THERMAL SCIENCE: Year 2019, Vol. 23, Suppl. 6, pp. S1839-S1847	 S1843

( )
21/1/

:
1

, log 1 1 1
1

abn

i n
i

ia b x
n

κ
=

      = + − − −    +      
∑ (22)

Cramer-von Mises estimates

The Cramer-von Mises estimator is one of the goodness of-fit estimators. This method 
is based on the difference between the estimate of the cdf and ecdf. The bias of these estimators 
is smaller than the bias of other minimum distance estimators studied by Luceno [27], Ramos 
and Louzada [9] and Macdonald [28]. The Cramer-von Mises estimators (CVME), âCVME and 
b^CVME, can be derived by minimizing following equation:
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Simulation study

In this section, it is performed a extensive Monte-Carlo simulation study in order to 
compare MLE, BE, LSE, WLSE, PE, and CVME for LKw(a, b) distribution. The biases and 
mean square errors (MSE) of these estimators are simulated based on 10000 repetitions by con-
sidering different samples of sizes such as 25, 50, 100, 250, and 500 and different initial values 
as (a = 0.5, b = 0.9), (a = 3.3, b = 1.5), (a = 2.3, b = 1.2) and (a = 4, b = 2) for LKw(a, b) distri-
bution. In the bayesian analysis, we consider (d1 = 0.01, e1 = 0.01) and (d2 = 0.01, e2 = 0.01) as 
the values of prior parameters. The results of simulation study are given in tabs. 1 and 2. 

Table 1. The biases and MSE of â and b
^
 by using different estimation 

methods for a = 0.5, b = 0.9 and a = 3.3, b = 1.5
n MLE BE LSE WLSE PE CVME

bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE
a = 0.5, b = 0.9

a^

25 0.0539 0.0280 0.0434 0.0261 0.0410 0.0393 0.0581 0.0385 –0.0392 0.0848 0.0605 0.0435
50 0.0267 0.0114 0.0218 0.0110 0.0208 0.0161 0.0325 0.0147 –0.0494 0.0515 –0.0494 0.0515
100 0.0137 0.0051 0.0111 0.0050 0.0107 0.0073 0.0182 0.0064 –0.0414 0.0299 0.0154 0.0076
250 0.0053 0.0019 0.0042 0.0019 0.0038 0.0027 0.0075 0.0022 –0.0299 0.0139 0.0056 0.0027
500 0.0027 0.0009 0.0022 0.0009 0.0019 0.0013 0.0040 0.0011 –0.0228 0.0073 0.0028 0.0013

b  
^ 

25 0.1047 0.0993 0.0913 0.0959 0.1710 0.2120 0.2110 0.2156 –0.0554 0.1477 0.1334 0.1899
50 0.0504 0.0361 0.0435 0.0352 0.0800 0.0614 0.1047 0.0592 –0.0605 0.0686 –0.0605 0.0686
100 0.0245 0.0155 0.0211 0.0153 0.0376 0.0240 0.0530 0.0220 –0.0477 0.0346 0.0293 0.0230
250 0.0097 0.0056 0.0083 0.0056 0.0140 0.0082 0.0215 0.0070 –0.0315 0.0149 0.0107 0.0080
500 0.0049 0.0028 0.0042 0.0028 0.0070 0.0039 0.0111 0.0033 –0.0228 0.0077 0.0053 0.0039

a = 3.3, b = 01.5

a^

25 0.2909 0.8819 0.2230 0.8184 0.2171 1.2228 0.3209 1.1924 –0.2200 0.9716 0.3203 1.3294
50 0.1451 0.3700 0.1113 0.3548 0.1113 0.5145 0.1828 0.4734 –0.1813 0.5188 0.1617 0.5389

100 0.0752 0.1694 0.0584 0.1656 0.0577 0.2387 0.1036 0.2089 –0.1286 0.2773 0.0827 0.2449
250 0.0291 0.0631 0.0224 0.0625 0.0205 0.0883 0.0434 0.0739 –0.0820 0.1177 0.0304 0.0892
500 0.0146 0.0309 0.0113 0.0308 0.0100 0.0438 0.0227 0.0359 –0.0580 0.0592 0.0150 0.0440

b  
^ 

25 0.2123 0.3789 0.1953 0.3737 0.3393 0.8982 0.4154 0.8987 –0.0850 0.2692 0.2813 0.8277
50 0.1003 0.1287 0.0910 0.1266 0.1543 0.2283 0.2012 0.2181 –0.0795 0.1258 0.1275 0.2148
100 0.0489 0.0536 0.0441 0.0531 0.0723 0.0859 0.1014 0.0780 –0.0601 0.0639 0.0596 0.0830
250 0.0192 0.0192 0.0173 0.0191 0.0267 0.0286 0.0410 0.0243 –0.0383 0.0269 0.0218 0.0282
500 0.0095 0.0093 0.0086 0.0093 0.0133 0.0138 0.0210 0.0113 –0.0271 0.0138 0.0108 0.0137
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Table 2. The biases and MSE of â and b
^
 by using different estimation methods   

for a = 2.3, b = 1.2 and a = 4, b = 2 
n MLE BE LSE WLSE PE CVME

bias MSE bias MSE bias MSE bias MSE bias MSE bias MSE
a = 2.3 
b = 1.2

a^

25 0.2197 0.4875 0.1716 0.4532 0.1649 0.6781 0.2398 0.6624 –0.1639 0.6212 0.2435 0.7421
50 0.1093 0.2025 0.0854 0.1943 0.0843 0.2825 0.1357 0.2598 –0.1428 0.3400 0.1225 0.2971
100 0.0564 0.0921 0.0446 0.0900 0.0436 0.1303 0.0766 0.1140 –0.1042 0.1848 0.0625 0.1340
250 0.0218 0.0342 0.0171 0.0339 0.0155 0.0480 0.0319 0.0401 –0.0682 0.0799 0.0230 0.0486
500 0.0110 0.0168 0.0087 0.0168 0.0076 0.0238 0.0168 0.0195 –0.0488 0.0409 0.0114 0.0239

  b  
^ 

25 0.1556 0.2097 0.1397 0.2046 0.2508 0.4733 0.3083 0.4773 –0.0687 0.1693 0.2026 0.4305
50 0.0741 0.0735 0.0657 0.0720 0.1155 0.1280 0.1510 0.1228 –0.0648 0.0804 0.0933 0.1198
100 0.0361 0.0310 0.0319 0.0306 0.0543 0.0490 0.0763 0.0446 –0.0492 0.0412 0.0437 0.0472
250 0.0142 0.0112 0.0125 0.0111 0.0201 0.0165 0.0309 0.0141 –0.0315 0.0175 0.0160 0.0162
500 0.0071 0.0055 0.0063 0.0055 0.0100 0.0079 0.0159 0.0066 –0.0222 0.0091 0.0079 0.0079

a = 4 
b = 2

a^

25 0.3186 1.1454 0.2391 1.0634 0.2287 1.5822 0.3506 1.5239 –0.2415 1.1483 0.3426 1.7043

50 0.1543 0.4656 0.1146 0.4467 0.1145 0.6602 0.1993 0.6019 –0.1981 0.5751 0.1699 0.6881

100 0.0726 0.2115 0.0528 0.2071 0.0526 0.2981 0.1061 0.2595 –0.1486 0.3043 0.0802 0.3046

250 0.0330 0.0854 0.0250 0.0846 0.0247 0.1189 0.0513 0.1005 –0.0853 0.1302 0.0357 0.1200

500 0.0140 0.0398 0.0101 0.0396 0.0074 0.0560 0.0229 0.0459 –0.0606 0.0644 0.0128 0.0562

b  
^ 

25 0.3363 0.8813 0.3210 0.8834 0.5173 2.3023 0.6244 2.1665 –0.0935 0.5344 0.4450 2.1695

50 0.1472 0.2700 0.1377 0.2680 0.2211 0.5011 0.2893 0.4755 –0.1048 0.2328 0.1878 0.4758

100 0.0670 0.1077 0.0619 0.1071 0.0995 0.1769 0.1413 0.1598 –0.0852 0.1186 0.0837 0.1718

250 0.0298 0.0399 0.0278 0.0397 0.0412 0.0608 0.0617 0.0518 –0.0497 0.0499 0.0351 0.0600

500 0.0138 0.0185 0.0128 0.0184 0.0181 0.0275 0.0296 0.0225 –0.0355 0.0248 0.0150 0.0273

Empirical applications

In this section, it is performed two real data analysis in order to illustrate usefulness 
of LKw(a, b) in real life. A comparison the performances of MLE, BE, LSE, WLSE, Pe, and 
CVME for parameters of LKw(a, b) distribution is given in this section. For these purposes it 
is used Anderson-Darling (A*), Cramer-Von Mises (W*), Kolmogorov-Smirnov test statistics 
(K-S) and its (p-value). 

Gauge lengths data

The first data set based on gauge lengths of 20 mm consists of 69 observations ob-
tained by Bader and Priest [29]. These data previously used by Kundu and Raqab, [30], Ghitany 
et al. [31] and Nofal et al. [32]. These data are given by:
1.312, 1.314, 1.479, 1.552, 1.700, 1.803, 1.861, 1.865, 1.944, 1.958, 1.966, 1.997, 2.006, 2.021, 
2.027, 2.055, 2.063, 2.098, 2.14, 2.179, 2.224, 2.240, 2.253, 2.270, 2.272, 2.274, 2.301, 2.301, 
2.359, 2.382, 2.382, 2.426, 2.434, 2.435, 2.478, 2.490, 2.511, 2.514, 2.535, 2.554, 2.566, 2.57, 
2.586, 2.629, 2.633, 2.642, 2.648, 2.684, 2.697, 2.726, 2.770, 2.773, 2.800, 2.809, 2.818, 2.821, 
2.848, 2.88, 2.954, 3.012, 3.067, 3.084, 3.090, 3.096, 3.128, 3.233, 3.433, 3.585, 3.585.
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The results of real data analysis for gauge lengths data are given in tab. 3. Also, cdf 
and pdf curves of these estimators for LKw(a, b) distribution are given in fig. 1.

Table 3. The parameter estimates and selection criteria statistics  
for gauge lengths data
Estimator a^ b  

^ A* W* K-S p-value
MLE 22.3085 5.4072 0.2687 1.2633 0.0534 0.9892
BE 22.5930 5.3970 0.3119 1.6777 0.0600 0.9647
LSE 23.5756 5.6703 0.2444 0.8684 0.0436 0.9994
WLSE 23.7161 5.8354 0.2672 0.8705 0.0488 0.9966
PE 22.0063 4.9715 0.2735 1.2863 0.0517 0.9927
CVME 23.7881 5.6424 0.2476 0.7391 0.0432 0.9995
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Figure 1. The curves for gauge lengths data; (a) cdf, (b) density  

Carbon fibers (in Gba) data

The second data set consists of 50 observations on breaking stress of carbon fibers (in 
Gba) obtained by Nichols and Padgett [33] is as follows:
3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 4.42, 2.41, 3.19, 3.22, 1.69, 3.28, 3.09, 
1.87, 3.15, 4.90, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.53, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 
2.55, 3.31, 3.31, 2.85, 2.56, 3.56, 3.15, 2.35, 2.55, 2.59, 2.38, 2.81, 2.77, 2.17, 2.83, 1.92.

The parameter estimates, and some selection statistics for carbon fibres data set are 
given in tab. 4.

Table 4. The parameter estimates and selection criteria statistics for carbon fibres data
Estimator a^ b  

^ 
A* W* K-S p-value

MLE 28.4793 3.1609 0.5142 1.9442 0.0845 0.8673
BE 28.0556 3.1329 0.5546 2.2357 0.0813 0.8959
LSE 35.3256 4.7092 0.5545 0.9684 0.0757 0.9369
WLSE 34.8359 4.6324 0.5531 0.9705 0.0790 0.9138
PE 26.8687 2.8253 0.5960 2.4165 0.0984 0.7182
CVME 35.7719 4.6719 0.5395 0.7860 0.0643 0.9860

The cdf and pdf curves according to six different estimators are presented for carbon 
fibres data in fig. 2. 
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Figure 2. The curves for carbon fibres data; (a) cdf, (b) density  

Concluding remarks

It has been considered ML, B, LS, WLS, P, and CVM estimation methods to estimate 
unknown parameters of LKw(a, b) distribution. Then, it is performed a Monte-Carlo simulation 
study to compare the performances of these estimators in terms of biases and MSE at different 
size of samples. According to results of simulation study, it is clearly seen that approximate 
bayes estimator is best the estimator among all estimators. Besides, as size of samples in-
creases, biases and MSE of all estimators decrease. Also, it is seen that the biases and MSE 
of maximum likelihood estimators and approximate Bayes estimators approach each other in 
big size of samples. On the other hand, we illustrate usefulness of LKw(a, b) distribution for 
gauge lengths and carbon fibers data sets. Further, it is compared the fits of these estimators for  
LKw(a, b) distribution via Anderson-Darling, Cramer-Von Mises, Kolmogorov-Smirnov statis-
tics and its p-values. It is seen that least square estimator is the best for gauge lengths data ac-
cording to tab. 3. Approximate bayes estimator is the better than other estimators in modelling 
carbon fiber data according to tab. 4. 
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