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The peristaltic flow of Carreau nanofluid with heat and mass transfer through po-
rous medium inside a symmetric horizontal channel with flexible walls is investi-
gated. The Hall currents with viscous dissipation, heat absorption and chemical 
reaction are considered, the system is stressed by a uniform strong magnetic field. 
The problem is modulated mathematically by a system of non-linear PDE which 
describe the motion, heat and nanoparticles phenomenon of the fluid. These equa-
tions with subjected boundary conditions are transferred to a dimensionless form 
and simplified under the assumptions of long wavelength and low Reynolds num-
ber, then solved analytically by using perturbation technique for small Weissen-
berg number. In other word these equations are solved also numerically by using 
Runge-Kutta-Merson method with Newton iteration in a shooting and matching 
technique. The effects of the emerging physical parameters of the problem on the 
velocity, temperature, and nanoparticles phenomena are discussed numerically for 
both techniques used for solutions and illustrated graphically through a set of fig-
ures. It is found that this problem plays a dramatic role in controlling the solutions. 
A comparison between the obtained solutions from both methods is made. 

Key words: peristaltic, nanoparticles, heat absorption, chemical reaction,  
Hall currents, Carreau fluid 

Introduction 

Nanofluids are moderately new category of fluids which consist of a base fluid with 

nano-sized particles (1-100 nm) suspended within them. Water, ethylene glycol, and oil are 

common examples of base fluids, nanoparticles of materials such as metallic oxides, nitride 

ceramics, carbide ceramics, and metals have been used for the preparation of nanofluids phe-

nomena. Nanofluids have their enormous applications in heat transfer, such as microelectronics, 

fuel cells, pharmaceutical processes, and hybrid-powered engines, domestic refrigerator, nu-

clear reactor coolant, grinding, and space technology, etc. They explore enhanced thermal con-

ductivity and the convective heat transfer coefficient is counter balanced to the base fluid. 

Nanofluids have attracted the attention of many researchers for new production of heat transfer 
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fluids in heat exchangers, in plants and in automotive cooling significations, due to their exten-

sive thermal properties. A large amount of literature is available which deals with the study of 

nanofluid and its applications. Nadeem et al. [1] have discussed mathematical model for the 

peristaltic flow of nanofluid through eccentric tubes comprising porous medium. Eldabe et al. 
[2] have investigated the peristaltic transport of MHD Carreau nanofluid with heat and mass 

transfer inside asymmetric channel. Heat and mass transfer of a Casson nanofluid flow over a 

porous surface with dissipation, radiation, and chemical reaction have been studied by 

Palaniammal and Saritha [3]. Peristaltic transport of a nanofluid in an inclined tube has been 

addressed by Prasad et al. [4]. Mahbubul et al. [5] have investigated the latest developments on 

the viscosity of nanofluids. Mustafa et al. [6] have obtained the analytical and numerical solu-

tions of the influence of wall properties on the peristaltic flow of a nanofluid. 

Peristalsis is a mechanism of fluid transport that occurs due to the propagation of si-

nusoidal waves across the walls of the channel. This phenomenon widely occurs in several 

industrial and biomedical applications including swallowing of food through esophagus, chyme 

motion in the gastrointestinal tract, blood circulation in small blood vessels, sanitary fluid 

transport of corrosive fluids. Due to the non-linear variation of stress vs. deformation rate in 

many applicable fluids, a number of researchers have been considering the studies of non-New-

tonian fluids such as Ellahi et al. [7] have discussed a theoretical study of Prandtl nanofluid in 

a rectangular duct through peristaltic transport. The influence of slip, wall properties on the 

peristaltic transport of a conducting Bingham fluid with heat transfer have been analyzed by 

Lakshminarayana et al. [8]. Non-linear peristaltic pumping of Johnson-Segalman fluid in an 

asymmetric channel under effect of magnetic field has investigated by Reddy [9]. The heat 

transfer analysis for peristaltic mechanism in variable viscosity fluid obtained by Hayat et al. 
[10]. Mahmoud and Abu Oda [11] have analyzed the blood flow in uniform planar channel. 

Numerical simulation for peristalsis of Carreau-Yasuda nanofluid in curved channel with mixed 

convection and porous space have initiated by Tanveer et al. [12]. 

The effect of applied magnetic field and heat transfer in the peristaltic flows are also 

analyzed in view of MHD character of blood, MHD power generators, method of hemodialysis, 

oxygenation, hyperthermia, and of Hall accelerators as well as in flight MHD. Nowar [13] stud-

ied the peristaltic flow of nanofluid under the effect of Hall current and porous medium. Kumar 

et al. [14] have examined the Hall effects on peristaltic flow of couple stress fluid in a vertical 

asymmetric channel. Hall effect on peristaltic flow of third order fluid in a porous medium with 

heat and mass transfer have studied by Eldabe et al. [15]. Hall effects on the peristaltic transport 

of Williamson fluid through a porous medium with heat and mass transfer have presented by 

Eldabe et al. [16].  

The main aim of this study is to investigate the peristaltic motion of Carreau nanofluid 

through porous medium in a symmetric horizontal channel. The Hall currents with viscous dis-

sipation, heat absorption and chemical reaction are taken into consideration. The system of PDE 

which describe this phenomenon with subjected boundary conditions are transferred to a di-

mensionless form and approximated under the assumption of long wavelength and low Reyn-

olds number assumptions. This system is solved analytically by using the perturbation tech-

nique for small Weissenberg number (W 1)  to obtain the velocity distribution, but the ho-

motopy perturbation method is applied to obtain the temperature and nanoparticles phenomena 

distributions. This system is also resolved numerically by using Runge-Kutta-Merson method 

with Newton iteration in a shooting and matching technique. The effects of the problem param-

eters on these solutions are described and cleared graphically.  
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Basic equations 

The basic equations that govern the peristaltic flow of Carreau nanofluid through a 

porous medium in a symmetric horizontal channel under the effects of Hall current with viscous 

dissipation, heat absorption and chemical reaction are: 
The continuity equation:  

 0 V  (1) 

Momentum equation: 
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Concentration equation: 

 
2 2

B 2 0
0

( ) ( )TD
D T k

t


   



  
            

V  (4) 

where V is the velocity vector of the fluid, J – the current density vector including the Hall 

effect, σ – the electric conductivity, B – the magnetic flux density, τ – the stress tensor, θ – the 

fluid temperature, φ – the nanoparticle phenomena, ρf – the density of the fluid, P – the pressure, 

k1 – the permeability of the porous medium, n – the kinematic viscosity, (ρc1)f – the heat capac-

ity of the fluid, (ρc1)f – the heat capacity of the nanoparticle material, kT – the thermal conduc-

tivity, DB – the Brownian diffusion coefficient, DT – the thermophoretic coeffecient, Qo – the 

heat absorption coefficient, k2 – the chemical reaction parameter, and ϕ – the dissipation func-

tion and is given by ϕ = τij(∂ui)/(∂xi). 

Constitutive equation of Carreau fluid [2] is given by: 
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where τij is the stress tensor components, η0 – the zero shear-rate viscosity, n – the dimensionless 

power-low index, Γ – the time constant, and Π – the second invariant strain tensor. 

Mathematical formulation 

Consider the peristaltic transport of Carreau nanofluid through porous medium in a 

symmetric horizontal 2-D channel with flexible walls on which are imposed traveling sinusoi-

dal waves of long wavelength. Choose the Cartesian co-ordinates (X, Y), where X  
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is the axis of the channel and Y – the perpendicular 

to it. We assume a uniform magnetic field with 

strong magnetic flux density B = (0, 0, Bo) and the 

Hall effects are taken into account. The induced 

magnetic field is neglected by assuming a very 

small magnetic Reynolds number, also it is as-

sumed that there is no applied or polarization volt-

age so that the total electric field E = 0. The lower 

and upper walls of the channel are maintained at 

constant temperatures (θ0 and θ1), respectively, and 

concentration (φ0 and φ1), respectively. Figure 1 

shows the physical mode of a symmetric channel. 

The channel wall equation is given by: 
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where d is the half width of the channel, a – the amplitude of the wave, λ – the wavelength, t – 

the time, and c – the wave velocity. 

The generalized Ohm’s law can be written as: 
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where e is the electric charge and ne – the number density of the electrons. In the view of the 

above assumption we have: 
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where U and V are X and Y components of the velocity vector, m = (σB0)/(ene) is the Hall pa-

rameter.  

We introduce a wave frame of reference (x, y) moving with velocity, c, in which the 

motion becomes independent of time when the channel length is an integral multiple of the 

wavelength and the pressure difference at the ends of the channel is a constant. The transfor-

mation from the fixed frame of reference (X, Y) to the wave frame of reference, (x, y), is given 

by: 

 x = X – ct,  y = Y,  u = U – c,  v = V,  and  p(x) = P(X, t) (10) 

where (u, v) are the velocity components in the wave frame, p and P are pressures in the wave 

and fixed frames of reference, respectively. 

Using the non-dimensional variables: 
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Figure 1. Geometry of the problem 
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Using these information, the governing eqs. of motion (2)-(4) can be written in di-

mensionless form after dropping the star mark as: 
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The dimensionless boundary conditions are: 
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For long wavelength (i. e. 1), and low Reynolds number (i. e. Re → 0), the system 

of our eqs. (13)-(16) can be reduced to:  
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From eq. (18), it is clear that P is independent of y. Therefore eqs. (17) and (19) after 

substituting from eqs. (5) and (6) can be written: 
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where A1 = A + M(1 + m2), A = (nd2)/(η0k1) is the porosity parameter, 2 2
0 0( )/( )M B d   – the 

magnetic parameter, A2 = P0 + M(1 + m2), Pr = (η0c1)/kT – the Prandtl number, Sc = (cd)/DB – 

the Schmidt number, Re = (ρcd)/η0 – the Reynolds number, Ec = c2/[c1(θ2 – θ1)] – the Eckert 

number, γ = (Q0d2)/kT – the coefficient of heat absorption, S = (k2d)/c – the coefficient of chem-

ical reaction, Nb = [(ρc)pDB(φ1 – φ2)]/[(ρc)fα] – the Brownian parameter, α = kT/[(ρc1)f],  

Nt = [(ρc)pDT(θ1 – θ0)]/[(ρc)fαT0] – the thermophoresis parameter, W = (cΓ)/d – the Weicsen-

berg number, B = (n – 1)/2, P0 = (dp/dx).  

Analytical solution 

The momentum eq. (21) subjected to the boundary conditions (16) is solved analyti-

cally by using perturbation technique for small Weicsenberg number (W 1)  where: 

 u = u0 + W2u1 + O(W4)  (23) 

Then the velocity distribution can be written in the form: 
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The solutions of energy and mass equations are obtained by applying the homotopy 

perturbation method, the temperature and the nanoparticles phenomena distributions can be 

written as: 

1 14 2 3
5 1 1 2 12

1

1
( ) e 16 e W E( )

2
P

1 2
c r

9

y A y Ay
y c B M A A A c

A


 

 


      

172 2 4 2 3
1 1 1 1 1 2 2E3 W (3 5 ) 16 ecPr EcPrW ( )

y A
B A M A c B M A A A c      

1 18 32 2 4
1 1 2 1 2EcPr3 e W (3 5 ) 96e ( )

y A y A
B A M A c M A A      

122 2
1 1 1 1 2 3 1 1[ ( 4 3 W (5 2 ) ] 4W )EcPr 12e

y A
c B y A A c c c A c       

2 3/2 2 2
1 1 1 1 1 1 1 2 1 3[ 4( ) W (21 12 13 12 ) 8W ( ) ]M A c B A M My A A yA c c M A c          



Eldabe, N. T., et al.
 

15 2 2
1 2 2 1 1 1 2 4EcPr 96e ( ){ [4 3 W ( 5 2 ) ] 4W }

y A
M A A c B y A A c c c        

16 2 3/2
1 2 2 1 1 1 1 1 2EcPr 12e ( {4 [4 W ( 21 12 13 12 ) ]}

y A
A c c M A B M My A A yA c c         

142 2 2
1 4 1 3 6 18W ( ) ]EcPr 16e ( 6 ( 2 ) [ ( 3 )

y A
M A c y A yA c y y A           

2 2 4 2 2 3 2 2
1 2 2 1 1 2 1 2 1 1 2 36 ( 2 3 W ( [ (2 3 W ) 2W ]MA A MA B A c c A c c BM c c c         

2 2 2 2
1 4 1 2 3 1 2 4 1 9 102W ) (1 2W 2 ( W ))) )Pr))c c MA c c c c c h c yc         

145 2 2 2 4
1 1 1 2 1 b2 2

1

2
t

1 4 3
e W (3 5 ) (2 ( ) )

5 16
P

19
r P

2
r EcP r

y A
y A B A M A c A N N

A
   




     


 

14 2 4
1 1 1 1 b t

3
e W (3 5 ) (2 ( )Ec Pr)

16
Pr

y A
B A M A c A N N 


      

13 2 3
1 2 2 1 b t

8
e W ( ) EcPr( 3 ( ) 2 Pr)

9

y A
B M A A c A N N       

13 2 3
1 2 1 1 b t

8
e W ( ) EcPr(3 ( ) 2 Pr)

9

y A
B M A A c A N N 


      

1 2 2
1 2 1 1 1 1 1 2 3 b t

2 2
1 1 1 1 2 3

1

48e ( )EcPr( ( ( 4 3 W (7 2 ) ) 4W )( )

2 ( ( 4 3 W (9 2 ) ) 4W ) )Pr

y A
M A A A c B y A A c c c N N

c B y A A c c c

A






     





    
  

1 2 2
1 2 1 2 1 1 1 2 4 b t

2 2
2 1 1 1 2 4

1

48e ( )EcPr( ( (4 3 W ( 7 2 ) ) 4W )( )

2 ( (4 3 W ( 9 2 ) ) 4 )Pr)

y A
M A A A c B y A A c c c N N

c B y A A c c W c

A





     





    
  

122 2 2 3 2
1 6 8 b 6 t 5 1 1 1 2 b t48 ( ( ) 2 2 Pr) 3e EcPr(12 W ( )

y A
y A c c N c N c c B yA c c N N  


         

2 2 2
1 1 3 b t 1 1 1 2 34 ( 2W )( ) ( ( 4 33 W ) 8 )PrM A c c N N A c BM c c W c        

2 2 2 2 2 5/2 2
1 3 1 1 2 b t 1 1 24 ( 2W )Pr W ( P12 ( r) 25 ) WM c c B A c c My N N B A c c        

3/2 2 2 2 2
b t r 1 1 1 2 3 b t 1 2(19( ) 12 P ) (( ( 4 27 W ) 8W )( ) 12 W Pr))N N y A c BM c c c N N BM y c c           

12 2 3/2 2
2 1 1 1 2 1 b tE6e (6 W ( ) ( ( ) Prc )Pr

y A
c B yA M A c c A N N      

2 2 2
1 1 2 1 1 1 2 1 4 b t

1
( ( 4( ) W (27 19 ) 8W ( ) )( )

2
A M A c B A M A c c M A c N N          



Eldabe, N. T., et al.
 

2 2 2
1 2 1 1 1 2 1 4( 4( ) W (33 25 ) 8W ( ) )Pr))M A c B A M A c c M A c         

3 2 2 4 2 2
1 2 b t 2 b t 1 1 2 b t8 ( 4 Ec( )Pr 2 Ec( )Pr 6 W Ec( )Pry MA A N N MA N N B A c c N N         

3 2 2 2
1 2 1 1 2 3 1 4 b t2 ( ( (2 3 W ) 2W ) 2W )Ec( )PrA c c BM c c c c c N N      

2 2 2
1 6 b t 3 2 1 3 1 4 1 b(4 Pr ( )(2 ( 2 (1 2 ( W ) 2W ) )Pr) Sc))A c N N A M c c c c c h SN            

2 24 2 2 2 2 2 4 2 2 2 3
1 2 2 1 1 2

2
1EcPr EcPr2 ( 8 4 12 W 4EcPry M A A M A B A c c A         

2 2 2 2 2 2
2 1 1 2 3 1 4 1 b t( ( (2 3 W ) 2W ) 2W )EcPr ( Pr ( 2c c BM c c c c c A N N         

 2 2
3 2 1 3 1 4 1 b(2 ( 2 (1 2 ( W ) 2W ) )Pr)) Sc)))A M c c c c c h SN         (25)  

13 2 3
7 8 1 1 2 1 t2

1

E
1 4

( ) e W ( ) Pc r
2 316

y A

b

y
y c yc B M A A A c N

A N


 

 

 
     


 

1 14 32 2 4 2 3
1 1 1 t 1 1 2 2 t

1 4
e W (3 5 ) Ec Pr e W ( ) Ec Pr

4 3

y A y A
B A M A c N B M A A A c N 


     

1 14 2 2 4 2
1 1 2 t 1 2 1

1
e W (3 5 ) Ec Pr 8e ( )( ( 4 3 W

4

y A y A
B A M A c N M A A c B 


       

122
1 1 1 2 3 t 1 1 1 1(5 2 ) ) 4W )Ec Pr e ( 4( )

y A
y A A c c c N A c M A c


       

2 3/2 2 2
1 1 1 1 1 2 1 3 tW (21 12 13 12 ) 8W ( ) )Ec PrA M My A A yA c c M A c N       

1 2 2 2
1 2 2 1 1 1 2 4 t8e ( )(4 3 W ( 5 2 ) 4W )Ec Pr

y A
B M A A c B y A A c c c N        

12 2 3/2 2
1 2 1 2 1 1 1 1 1 2e (4( ) W ( 21 12 13 12 )

y A
A c M A c B A M My A A yA c c         

2 3 2 2
1 4 t 1 b 1 2 t

4
8 ( ) )Ec Pr ( Pr Sc) 4 ( 4 Ec Pr

3
tW M A c N y A N SN y MA A N        

2 2 4 2 2 3 2 2
2 t 1 1 2 t 1 2 1 1 2 32 Ec Pr 6 W Ec Pr 2 ( ( (2 3 W ) 2 )MA N B A c c N A c c BM c c W c      

2 2 2 2
1 4 t 1 t 3 2 1 3 1 4 1 b 112W )Ec Pr ( (2 ( 2 (1 2 ( W ) 2 ) )Pr) Sc)))c c N A N A M c c c W c c h SN c           

2 2
12 1 t 6 8 b 6 t 5 7 b2 2

1 b

1
(48 ( (( ) 2 2 Pr) 2 Sc)

192
yc y A N c c N c N c S c N

A N
  


       

13 2 3
1 2 2 t 1 b t

8
e W ( ) Ec Pr(3 ( ) 2 ( Pr Sc))

9

y A
B M A A c N A N N S        



Eldabe, N. T., et al.
 

14 2 4
1 1 2 t 1 b t

3
e W (3 5 ) Ec Pr(2 ( ) ( Pr Sc))

16

y A
B A M A c N A N N S        

14 2 4
1 1 1 t 1 b t

3
e W (3 5 ) Ec Pr(2 ( ) ( Pr Sc))

16

y A
B A M A c N A N N S  


      

13 2 3
1 2 1 t 1 b t

8
e W ( ) Ec Pr(3 ( ) 2 ( Pr Sc))

9

y A
B M A A c N A N N S  


      

5 2 2 2 3
1 b t 1 2 b t

4
( Sc Pr( Pr Sc)) 8 (4 E (c )Pr

5
ty A S N N S y MA A N N N           

2 2 4 2 2 3 2
2 t b t 1 1 2 t b t 1 2 1 1 22 Ec ( )Pr 6 W Ec ( )Pr 2 ( ( (2 3 W )MA N N N B A c c N N N A c c BM c c       

2 2 2
3 1 4 t b t 1 t 6 b t 32W ) 2W )Ec ( )Pr ( (4 Pr ( )(2c c c N N N A N c N N A       

2 2
2 1 3 1 4 1 b 8 t( 2 (1 2 ( W ) 2W ) )Pr)) (4 )Sc))M c c c c c h SN c N          

1 2 2 2 2
1 2 t 1 1 2 b t 1 1 3 b t

1

1
48e ( )Ec Pr(6 W ( ) 4 ( W )( )

y A
M A A N B yA c c N N A c c N N

A



        

2 2 2 2 3/2 2
1 1 2 1 3 1 1 254 W ( Pr Sc) 8 ( W )( Pr Sc) 3 WB Ac c S c c S B A c c          

1 2 2 2
b t 1 2 t 1 1 2 b t

1

1
(7 7 4 ( P S ))) 48e ( )E ( 6 Wr c c Pr ( )

y A
N N y S M A A N B yA c c N N

A
           

2 2 2 2
1 2 4 b t 1 1 2 2 44 ( W )( ) 54 W ( Pr Sc) 8 ( W )( Pr Sc)A c c N N B A c c S c c S            

122 3/2 2 2 3 2
1 1 2 b t 1 t 1 1 2 b t3 W (7 7 4 ( Pr Sc))) 3e Ec Pr(12 W ( )

y A
B A c c N N y S c N B yA c c N N  


        

2 2 2
1 1 3 b t 1 1 1 2 34 ( 2W )( ) ( ( 4 33 W ) 8W )( Pr Sc)M A c c N N A c BM c c c S          

2 2 2 2
1 3 1 1 2 b t4 ( 2W )( Pr Sc) W (12 ( ) 25 ( Pr Sc))M c c S B A c c My N N S           

2 5/2 2 3/2 2
1 1 2 b t 1 1 b t 3 b tW (19 19 12 ( Pr Sc)) ( 4 ( ) 8W ( )B A c c N N y S A c N N c N N           

122 2
1 2 b t 2 t3 W (9 9 4 ( Pr Sc)))) 3e Ec Pr

y A
BM c c N N y S c N        

2 3 2 2 2
1 1 2 b t 1 2 4 b t 1 2 1 2( 12 W ( ) 4 ( 2W )( ) ( ( 4 33 W )B yA c c N N M A c c N N A c BM c c          

2 2 2 2 2
4 2 4 1 1 2 b t8W )( P Sc) 4 ( 2W )( Pr Sc) W (1 ( )r 2c S M c c S B A c c My N N           

2 5/2 2 3/2
1 1 2 b t 1 2 b t25 ( Pr Sc)) W (19 19 12 ( Pr Sc)) ( 4 ( )S B A c c N N y S A c N N             

2 2 2
4 b t 1 2 b t8W ( ) 3 W (9 9 4 ( Pr Sc))))c N N BM c c N N y S        



Eldabe, N. T., et al.
 

4 2 2 2
1 2 t 2 t c2 ( 8 Ec Pr( Pr Sc) 4 Ec Pr( Pr )y M A A N S M A N SS         

2 2 4 2 2 2 3 2 2 2 2
1 1 2 t 1 1 2 2 312 W Ec Pr( Pr c) 4 (3 W 2WB A c c N SS A BM c c c c        

2 2 2
1 2 4 t 1 3 t t2 ( W ))Ec Pr( Pr Sc) (4 ( Pr Sc)c c c N S A A N S N          

2 2 2
t 2 1 3 1 4 1Pr( 2 ( 2 (1 2 ( W ) 2W ) )( Pr Sc))N M c c c c c h S           

 2 2
b t

2(2 ( Pr Sc))))S )cN S N S     (26) 

Numerical solution 

The same system of our non-liner PDE is solved by the numerical method based on 

Runge-Kutta-Merson method with Newton iteration in a shooting and matching technique. Use 

the following transformations:  

1 3 5              , ,    u Y Y Y     

Equations (20)-(22) with the boundary conditions (16) can be written: 

 2 2
1 2 2 2 1 1 2, 1 W( 3 )Y Y Y B Y AY A      (27) 

 2 2 4 2 2
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Subject to the boundary conditions: 

 
1 3 5

1 3 5

1 ,    0 and 0     at 

1 ,    1  and 1     at   

Y Y Y h

Y Y Y h





     

   





 (30) 

where the prime denotes to the differentiation with respect to y. To compute the physical quan-

tities u, θ, and φ. MATHEMATICA package version 9 is used to solve the system of eqs. (27)-

(29) with the boundary conditions (30).   

The numerical solutions are compared with the perturbation solution through figs. 2-4.  

Results and discussion 

In the present section of the study, the effects of the physical parameters of the problem 

on the solutions obtained both analytically or numerically are discussed numerically and illus-

trated graphically through a set of figures. Also, a comparison between the analytical solutions 

and the numerical solutions are made. At the first figs. 2-4 clear that the results due to the ana-

lytical and numerical solutions obtained for velocity, temperature and nanoparticles are com-

pletely consistent and overlapped, and are convincing proof of the high accuracy of the pertur-

bation method in solving non-linear differential equations compared to numerical method. 

The graphs for velocity profile are described through figs. 5-9. Figures 10-15 demon-

strate the variation of the temperature profile, the effects of various parameters on nanoparticle 

phenomena are discussed through figs. 16-19. 
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Velocity profile  

The velocity, u, of the flow field is found to change more or less with the variation of 

the flow parameters. Figure 5 declares that the velocity increases with an increase in the value 

of the Hall parameter, m. This is due to the fact that an increase in m decreases the effective 

conductivity σ/(1 + m2), and hence the magnetic damping which clear in fig. 6. Figure 6 depicts 

the effect of the magnetic parameter, M, on the velocity distribution. Applications of magnetic 

field to an electrically conducting flow give rise to a resistive type of force called Lorenz force. 

This force has the tendency to slow down the motion of the fluid. As expected, as M increase 

the velocity decrease. 

 

Figure 2. Comparison between analytical and 
numerical solutions of the velocity distribution,  
u, for different values of A = 0.2, M = 1.2, m = 1,  
p0 = 0.5, n = 0.4, and W = 0.3 

 

Figure 3. Comparison between analytical and 
numerical solutions of the temperature 
distribution θ for different values of A = 0.2,  
M = 1.2, m = 1, p0 = 0.5, n = 0.4, W = 0.3, Pr = 0.7, 
Ec = 0.1, γ = 0.5, Sc = 0.15, S = 0.5, Nb = 1.5,  
and Nt = 0.5 

 

 

Figure 4. Comparison between analytical and 
numerical solutions of the nanoparticles 
phenomena, φ, for different values of A = 0.2,  
M = 1.2, m = 1, p0 = 0.5, n = 0.4, W = 0.3, Pr = 0.7, 
Ec = 0.1, γ = 0.5, Sc = 0.15, S = 0.5, Nb = 1.5,  
and Nt = 0.5 

 

Figure 5. The velocity distribution, u, is plotted 
against y for different values of m when A = 0.2, 
M = 1.2, p0 = 0.5, n = 0.4, and W = 0.3 

 

Figure 7 depicts the behavior of the velocity under the effects of various values of 

Weissenberg number it is found that the velocity decreases with increasing Weissenberg number.  

The influence of dimensionless power-law index, n, on velocity is illustrated in fig. 8, 

increasing n has a tendency to increase the velocity. Figure 9 illustrates the effect of the porosity 

parameter A on the velocity, it is clear that the velocity increases with increasing A.   
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Temperature profile 

The variation of temperature profile for different values of the magnetic parameter, 

M, is plotted in fig. 10, it is clear that the temperature increases with increasing M.  

The variation in the temperature distribution for different values of coefficient of heat 

absorption, γ, is given in fig. 11. 

 

Figure 6. The velocity distribution, u, is plotted 
against y for different values of M when  
A = 0.2, m = 1, p0 = 0.5, n = 0.4, and W = 0.3 

 

Figure 7. The velocity distribution, u, is plotted 
against y for different values of W when  
A = 0.2, m = 1, M = 1.2, n = 0.4, and p0 = 0.5 

 

 

Figure 8. The velocity distribution, u, is plotted 
against y for different values of n when  
A = 0.2, m = 1, M = 1.2, W = 0.3, and p0 = 0.5 

 

Figure 9. The velocity distribution, u, is plotted 
against y for different values of A when n = 0.4, 
m = 1, M = 1.2, W = 0.3, and p0 = 0.5 

 

 

Figure 10. The temperature distribution, θ, is 
plotted against y for different values of M when  
A = 0.2, m = 1, p0 0.5, n = 0.4, W = 0.3, Pr = 0.7,  

 

Figure 11. The temperature distribution, θ, is 
plotted against y for different values of γ when  
A = 0.2, m = 1, p0 = 0.5, n = 0.4, W = 0.3, Pr = 0.7, 
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Ec = 0.1, γ = 0.5, Sc = 0.15, S = 0.5, Nb = 1.5,  
and Nt = 0.5 

Ec = 0.1, M = 1.2, Sc = 0.15, S = 0.5, Nb = 1.5,  
and Nt = 0.5 

It is noticed that an increase in the values of γ leads to decrease in the temperature. 

Figures 12 and 13 display the effects of the Brownian parameter, Nb, and the thermophoresis 

parameter, Nt, on the temperature distribution. There is a substantial increase in the temperature 

with an increase in Nb and Nt. As the Brownian motion and thermophoretic effects strengthen, 

this corresponds to the effective movement of nanoparticles from the wall to the fluid which 

results in the significant increase in the temperature. 

 

Figure 12. The temperature distribution, θ, is 
plotted against y for different values of Nb when  
A = 0.2, m = 1, p0 = 0.5, n = 0.4, W = 0.3, Pr = 0.7,  
Ec = 0.1, γ = 0.5, Sc = 0.15, S = 0.5, M = 1.2,  
and Nt = 0.5 

 

Figure 13. The temperature distribution, θ, is 
plotted against y for different values of Nt when 
A = 0.2, m = 1, p0 = 0.5, n = 0.4, W = 0.3, Pr = 0.7, 
Ec = 0.1, γ = 0.5, Sc = 0.15, S = 0.5, M = 1.2,  
and Nb = 1.5 

The temperature profile for different values of Prandtl number, and Eckert number are 

shown in figs. 14 and 15. It is distinguished that the temperature inside the fluid is forcefully 

diminished when Prandtl number is increased. Prandtl number is a proportion between momen-

tum diffusivity and thermal diffusivity. At the point when the Prandtl number is increased, ther-

mal diffusivity diminishes, which reduces the thermal layer thickness, while the temperature 

increases by increasing Eckert number. 

 

Figure 14. The temperature distribution, θ, is 
plotted against y for different values of Pr when  
A = 0.2, m = 1, p0 = 0.5, n = 0.4, W = 0.3, Nb = 1.5, 

 

Figure 15. The temperature distribution, θ, is 
plotted against y for for different values of Ec 
when A = 0.2, m = 1, p0 = 0.5, n = 0.4, W = 0.3,  
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Ec = 0.1, γ = 0.5, Sc = 0.15, S = 0.5, M = 1.2,  
and Nt = 0.5 

Nb = 1.5, Pr = 0.7, γ = 0.5, Sc = 0.15, S = 0.5,  
M = 1.2, and Nt = 0.5 

Nanoparticle phenomena 

The nanoparticles phenomena distribution of the flow field is affected by four param-

eters, namely, the Schmidt number the chemical reaction coefficient, S, the Brownian parame-

ter, Nb, and the thermophoresis parameter, Nt. Figures 16 and 17 illustrated the nanoparticles 

phenomena distribution for several values of the Schmidt number and the S. Schmidt number 

quantifies the relative effectiveness of momentum and mass transport by diffusion in hydrody-

namic and nanoparticles. As the Schmidt number increase the nanoparticles phenomena de-

crease. The nanoparticles phenomena also decrease as the S increases. 

 

Figure 16. The nanoparticles phenomena, φ, is 
plotted against y for different values of Sc when  
A = 0.2, m = 1, p0 = 0.5, n = 0.4, W = 0.3, Nb = 1.5, 
Pr = 0.7, γ = 0.5, Ec = 0.1, S = 0.5, M = 1.2,  
and Nt = 0.5 

 

Figure 17. The nanoparticles phenomena, φ, is 
plotted against y for different values of S when  
A = 0.2, m = 1, p0 = 0.5, n = 0.4, W = 0.3, Nb = 1.5, 
Pr = 0.7, γ = 0.5, Sc = 0.15, Ec = 0.1, M = 1.2,  
and Nt = 0.5 

Figures 18 and 19 display the effects of the Brownian parameter, Nb, and the thermo-

phoresis parameter, Nt, on the nanoparticles phenomena. There is a substantial increase in the 

nanoparticles phenomena with an increase in Nb. While the nanoparticles phenomena decrease 

by increasing the Nt.  

 

Figure 18. The nanoparticles phenomena, φ, is 
plotted against y for different values of Nb when  
A = 0.2, m = 1, p0 = 0.5, n = 0.4, W = 0.3, S = 0.5,  

 

Figure 19. The nanoparticles phenomena, φ, is 
plotted against y for different values of of Nt 
when A = 0.2, m = 1, p0 = 0.5, n = 0.4, W = 0.3,  
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Pr = 0.7, γ = 0.5, Sc = 0.15, Ec = 0.1, M = 1.2,  
and Nt = 0.5 

S = 0.5, Pr = 0.7, γ = 0.5, Sc = 0.15, Ec = 0.1,  
M = 1.2, and Nb = 1.5 

Conclusion 

Analytical and numerical studies are made to obtain the solutions of the system of 

deferential equations which describe the peristaltic transport of a Carreau nanofluid through a 

porous medium in a symmetric horizontal channel. The effect of heat absorption, chemical re-

action and Hall current with viscous dissipation are taken into account. The equations of motion 

are modulated and solved analytically by using perturbation technique and numerically by using 

Runge-Kutta-Merson method in a shooting and matching technique for velocity, temperature 

and nanoparticles phenomena. The effects of various emerging parameters are seen with the 

help of graphs. From the presented analysis some of the interesting observations are summa-

rized as follows. 

 The comparison between the analytical solutions and numerical solutions refers to the ac-

curacy of analytical solutions compared to numerical solutions which appear in the match-

ing curves. 

 The velocity of the flow field increases by increasing the the Hall parameter, m, while it 

decreases by increasing values of the magnetic parameter, M.  

 The effects of the Brownian parameter, Nb, and the thermophoresis parameter, Nt, on the 

temperature distribution increase the temperature. 

 The temperature, θ, decrease with increasing the coefficient of heat absorption, γ, and 

Prandtl number.  

 Increasing the magnitude of chemical reaction coefficient, S, led to decrease in the nano-

paricles phenomena.  

 The nanoparticles phenomena increase with an increase in Nb. While the nanoparticles phe-

nomena decrease by increasing the Nt. 
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