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Discrete fractional calculus deals with sums and differences of arbitrary orders.
In this study, we acquire new discrete fractional solutions of hydrogen atom type
equations by using discrete fractional nabla operator V40 < o. < 1). This operator
is applied homogeneous and non-homogeneous hydrogen atom type equations. So,
we obtain many particular solutions of these equations.
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Introduction

Fractional analysis has many applications in diverse fields of science and engineering
such as Schrodinger equation, diffusion, control theory, and statistics [1-3]. The similar theory
for discrete fractional analysis was initiated and properties of the theory of fractional differenc-
es and sums were established. Recently, many books and articles related to discrete fractional
analysis have been published [4-12].

In 1956 [4], differences of fractional order were introduced by Kuttner. Diaz and Osler
[5], define the concept of fractional difference:
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where p is any real number. Granger, Joyeux, and Hosking [13, 14] defined the concept of

fractional difference:
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where p is any real number and ¢*f(7) = f(z — k) — the shift operator. Gray and Zhang [15] studied
on a new definition of the fractional difference through summation.

In this article, we will consider the equation:
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where ¥ is the distance of the mass center to the origin, n — the real number, £ — the positive
integer, x — the energy constant, and » — the distance among the nucleus and electron [16]. If we
take ¥ = u/r in eq. (1), then we have the hydrogen atom type equations (HAE):
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In many works:
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this part takes a centripetal and Colomb part, the usual singularities of the nuclear problem [17].
Yilmazer [18] acquired fractional solutions of eq. (2) by using the Nishimoto operator. Panak-
hov and Yilmazer [19] investigated the Hochstadt-Lieberman theorem for eq. (2). Bas et al. [20]
researched the uniqueness for the HAE eq. (2).

The aim of this article is to obtain new discrete fractional solutions (DFS) of the HAE
by means of fractional calculus operator.

Preliminary and properties
Let p € R* such that k— 1 < p < k where £ is an integer. The p™ order fractional sum
of g:

T

v, g(7) =%p) ‘:b(r—é(s))ﬁ g(s) (4)

where T € N, = {b} +Ny={b, b+ 1,b+2,...}, b ER, 6(r) = v— 1 is jump operator.
The ascending factorial:
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Let p € R. Then 7 to the p rising:
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Let us note:
v(e)=pe ©

where Vu(z) = u(z) —u[d(t)] = u(z) — (z - 1).
The p™ order fractional difference of g:

Vig(e) =V [V ()] | =3 (e 5(5) ) 7

(k=p)=

where g : Nj — R [8].
Theorem 1 [11]. Let f(z) and g(z) : N;— R, p, > 0, h, v are scalars. The following
equality holds:

VIV f(2)=V T f ()= VIV £ (1) (8)
%4 [hf(r)+vg(r)} =hV’ f(7)+vwW’g(r) 9)



Yilmazer, R., et al.: On Discrete Fractional Solutions of the Hydrogen Atom ...
THERMAL SCIENCE: Year 2019, Vol. 23, Suppl. 6, pp. S1935-S1941 S1937

Lemma 2 (Power Rule) [6]. Let p > 0. Then the following holds:

- r 1 P
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for every t € N,.
Lemma 3 [7]. For any p > 0, the following equality holds:

(r-b+ 1)ﬁ
r(p)
Lemma 4 (Leibniz Rule) [8]. For any p > 0, p™ order, the fractional difference of the
product fg:

VAN (£) = VY7 (5)- £(0) (10)

VS(fg)(r)=i[ij[vﬁ‘kf(f—k)][v"g(f)] (1

k=0

P _ L(p+1)
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and ¢f{(r) = f(r— 1) is shift operator.
Lemma 5 (Index law) [18]. Let fis analytic and single-valued. The following equality

where

holds:
[£,)], = £ (=11, )], [, ()% 0:1, ()2 0] (12)

for every p, n € R.

Main results
The DFS of non-hormogeneous HAE

Theorem 6. Let ® € {®:0#£| D, | <oo; a € R}and ¢ € {¢ : 0| @, | < 0; & € R}. Then
the non-homogeneous HAE, 7 = £ + (1/2) in (2):

1_.2
(D2+{/I+Z+4—Z}D:¢, (z;tO) (13)
z z
has particular solutions:
CDI _ Zr+%ef Aiz {|:(¢Z;Tex/ziz ) e—2ﬁizzf*7’ﬁi| eZ\/ZizZ*TfiJrﬁ} (14)
a - (1+a)
o = Zr+%ex/7fz {[(¢Zé—reﬁiz ) eZ\/ZizZT—§+z‘7‘/I:| 672\/21'22_7—7_2’7\/7‘ } (15)
s -1 ~(1+8)
(D]H _ Z*T+%e—ﬁiz {|:(¢Zé+reﬁiz ) efzﬁizzfrfifﬁ :| eZ\/ZizZTffJ'ﬁ} (16)
a - (1+a)
oV = Z—r+%ex/7fz {[(¢Zé+zeﬁiz) ezﬁizz—f—i+z'T:| efzﬁizzf—i_z;ﬁ} (17)
4 -1 ~(1+8)

where @, = d*®/dz?, = ® = D(z)(z # 0, z € R), ¢ = ¢(z) (an arbitrary given function), z, y are
given constants, Q is a shift operator and a, f:
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Proof. Set:
D=z, y=y(z) (18)
we have then:
zw2+201//l+{(02—0+%—rzjz1+\/Zz+;/}//:¢z“’ (19)
from eq. (13). Choose ¢ such that:
1
o= E tr (20)
Case of
J=T+%
From egs. (18) and (19):
O=z:"y 1)
and
2y, + (20 + Dy, +(Az+ 7))y = g2 (22)
respectively.
Next, by writing:
y=e"9p [p=0(z)] (23)
we have then:
zp, +(2vz+ 2t +1) g + [(v2 + /1) z+(2r+1)v+ 7/] Q= ¢z%7fe’” (24)
From eq. (22), applying eq. (23). Choose v such that:
v=+J1i, 1>0 (25)
~ when v=-/2i :
v=c'p (26)
and
zp, + (—2\/21'2 +27+ 1) @+ [—iﬂ(% +1)+ 7/} p=gz el (27)

from egs. (23) and (24).
Applying the discrete operator V“ to both sides of (27), we obtain:

20,,, +(-2V2iz+ 20 +1420) gy, +[ 7~ VA (2 +14200) |p, =(pz ) %)
from egs. (9), (11), and (12).
Choose a:
s 1
a=-0"| =+ +—j 29
¢ [2\/1 i (29)

then:
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from eq. (28).
Next, by writing:

Z g =w=w(z) 31)

we obtain:

1 i}’

[2J7+ - } e G I (32)
. (e

z

from eq. (30). A solution this differential equation:
|:(¢Z -7 \/_IZ )7Q7](L+T+l) e—th/_z - +r:| eZiﬁzZzTZ*T*Y (33)
i 2 0

Making use of the reverse process to obtain @', we finally obtain the solution (14)
from egs. (21), (26), (31), and (33).
— when v=+Ai:

y=c""p, p=0(z) (34)
and

20, +(2Vaiz + 20 41) g +[ WA (20 +1) 4y | = gt e (35)

from egs. (23) and (24), respectively.
Applying the discrete operator V* to both members of eq. (35):

z¢2+a+(2\/ziz+27+l+aQ)q)lm |:7+l\/7(22'+1+20!Q)j| (¢z - 'ﬁ”)a (36)

Choosing a:

_ | iy l =
a=-0Q [ 2«/I+T+2] p (37)

and replacing:

Pgi (g =9 =9(2) (38)

we have:

(39)

-0 (—%+1+%)

T+i+ L 1 _
AT R
z z
from eq. (36). A solution this differential equation:

{( g ezlﬁzzzﬁw—;} (2 i) “0)

o (-pee) }

Therefore, we have eq. (15) from egs. (21), (34), (38), and (40).

Remark 1. In the same way as the procedure in subsections we use ¢ = — +(1/2) and
replacing 7 by —z, then we have other solutions eqs. (16) and (17) different from eqs. (14) and
(15), respectively, if t# 0.
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The DFS of the homogeneous HAE
Theorem 7. Let ® €{® : 0 #| D, | <o; a € R}. Then the homogeneous HAE:

l_ 2
{m i }@:o (41)
z Z
has particular solutions of the equations:
CD(I) = kZTJr%e—«/Iiz (62\/2&2777%+2 7 ) (42)
—]+Q r+ +—
oM = fz e (e’Zﬁ"zziri%ﬁ) (43)
-1+Q~ r+é 257
m ~T+y ﬂﬁiz Wiz i
=kz (e z P )
-1+0™! 1+ +— (44)
W) = fz eV (e'zﬁ”zr " #) (45)
140! r+i—%
Proof. Taking ¢ = 0 in Theorem 6:
THy—37
+| 2 i+ —22 =0 (46)
z

and

9+[2\Fz+ LAY }9 0 (47)

for v = —i(1)"? and v = i(1)"? instead of egs. (32) and (39), respectively. Therefore, we obtain
eq. (42) for eq. (46) and eq. (43) for eq. (47).
Remark 2. In the same way, we use ¢ = — +(1/2) and replacing 7 by —, then we have
other solutions eqs. (44) and (45) different from eqs. (42) and (43), if t # 0.
Example. In the case y = 0, and r = — 1/2, and ¢(z) = z, wi have:
O+ AD =z (48)
from eq. (13) the solution of equation (48):

CD(z) oV {|:(z ZeJ—zz) e72\/zizz—1:| ezﬁfz} — o Vi {[ze’ﬁ”} ezﬁiz} _
0 B L L ;
=z (49)
=V al i+l L hle’ﬁ"z + hzeﬁiz +Z, 2>0
A A . 7

by using eq. (14). The function obtained in eq. (49) provides the equation eq. (48).
We plotted 2-D graphs of eq. (49), as shown in fig. 1.

Conclusion

In this article, we first considered the HAE obtained from the radial part of the reduced
equation by applying the method of separating variables in the spherical co-ordinates of the
Schrodinger equation. We use the nabla discrete fractional operator for hydrogen atom type
equations. We consider homogeneous and non-homogeneous HAE. We have obtained many
different DFS for these equations. In previous time, no one achieved these solutions of HAE.
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Figure 1. The 2-D dimension solutions od eq. (49), using /2, = 0.2 and 4, =0.3

We will obtain particular solutions of the same type singular ordinary and partial differential
equations by using the discrete fractional nabla operator in future works.
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