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Discrete fractional calculus deals with sums and differences of arbitrary orders. 
In this study, we acquire new discrete fractional solutions of hydrogen atom type 
equations by using discrete fractional nabla operator ∇α(0 < α < 1). This operator 
is applied homogeneous and non-homogeneous hydrogen atom type equations. So, 
we obtain many particular solutions of these equations.
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Introduction 

Fractional analysis has many applications in diverse fields of science and engineering 
such as Schrodinger equation, diffusion, control theory, and statistics [1-3]. The similar theory 
for discrete fractional analysis was initiated and properties of the theory of fractional differenc-
es and sums were established. Recently, many books and articles related to discrete fractional 
analysis have been published [4-12].

In 1956 [4], differences of fractional order were introduced by Kuttner. Diaz and Osler 
[5], define the concept of fractional difference:
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where ρ is any real number. Granger, Joyeux, and Hosking [13, 14] defined the concept of 
fractional difference:
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where ρ is any real number and qkf(τ) = f(τ – k) – the shift operator. Gray and Zhang [15] studied 
on a new definition of the fractional difference through summation. 

In this article, we will consider the equation:
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where Ψ is the distance of the mass center to the origin, n – the real number, 𝓁 – the positive 
integer, κ – the energy constant, and r – the distance among the nucleus and electron [16]. If we 
take Ψ = u/r in eq. (1), then we have the hydrogen atom type equations (HAE):
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In many works:
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this part takes a centripetal and Colomb part, the usual singularities of the nuclear problem [17]. 
Yilmazer [18] acquired fractional solutions of eq. (2) by using the Nishimoto operator. Panak-
hov and Yilmazer [19] investigated the Hochstadt-Lieberman theorem for eq. (2). Bas et al. [20] 
researched the uniqueness for the HAE eq. (2).

The aim of this article is to obtain new discrete fractional solutions (DFS) of the HAE 
by means of fractional calculus operator.

Preliminary and properties 

Let ρ ∈ ℝ+ such that k – 1 ≤ ρ < k where k is an integer. The ρth order fractional sum 
of g:
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where τ ∈ ℕb = {b} +ℕ0 = {b, b + 1, b + 2,...}, b ∈ ℝ, δ(τ) = τ – 1 is jump operator.
The ascending factorial:
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Let ρ ∈ ℝ. Then τ to the ρ rising:
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Let us note:

( ) 1ρ ρτ ρτ −∇ = (6)

where ∇u(τ) = u(τ) – u[δ(τ)] = u(τ) – (τ – 1). 
The ρth order fractional difference of g:
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where g : ℕ+
b → ℝ [8].

Theorem 1 [11]. Let f(τ) and g(τ) : ℕ+
0 → ℝ, ρ, η > 0, h, v are scalars. The following 

equality holds:
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Lemma 2 (Power Rule) [6]. Let ρ > 0. Then the following holds:
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for every τ ∈ ℕb .
Lemma 3 [7]. For any ρ > 0, the following equality holds: 
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Lemma 4 (Leibniz Rule) [8]. For any ρ > 0, ρth order, the fractional difference of the 
product fg: 
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and qf(τ) = f(τ – 1) is shift operator.
Lemma 5 (Index law) [18]. Let f is analytic and single-valued. The following equality 

holds:
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for every ρ, η ∈ ℝ. 

Main results 

The DFS of non-homogeneous HAE

Theorem 6. Let Φ ∈ {Φ : 0 ≠ | Φα | < ∞; α ∈ ℝ} and ϕ ∈ {ϕ : 0≠ | ϕα | < ∞; α ∈ ℝ}. Then 
the non-homogeneous HAE, τ = 𝓁 + (1/2) in (2):
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has particular solutions:

( ) }
( )

1 11 1
2 22 22 2I 2 2

1 1
e e e e

i i
iz iz iz izz z z z

γ γ
λ λ

τ ττ τλ λ λ λ

α α
φ

− − − − ++ −− −

− − +

 Φ =   
(14)

( ) }
( )

1 11 1
2 22 22 2II 2 2

11
e e e e

i i
iz iz iz izz z z z

γ γ
λ λ

τ ττ τλ λ λ λ

β β
φ

− + − − −+ − − −

− +−

 Φ =   
(15)

( ) }
( )

1 11 1
2 22 22 2III 2 2

1 1
e e e e

i i
iz iz iz izz z z z

γ γ
λ λ

τ ττ τλ λ λ λ

α α
φ

− − − − +− + +− −

− − +

 Φ =   
(16)

( ) }
( )

1 11 1
2 22 22 2IV 2 2

11
e e e e

i i
iz iz iz izz z z z

γ γ
λ λ

τ ττ τλ λ λ λ

β β
φ

− − + − −− + + − −

− +−

 Φ =   
(17)

where Φ2 = d2Φ/dz2, Φ0 = Φ = Φ(z)(z ≠ 0, z ∈ ℝ), ϕ = ϕ(z) (an arbitrary given function), τ, γ are 
given constants, Q is a shift operator and α, β: 
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Next, by writing:
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from eqs. (23) and (24).
Applying the discrete operator α∇  to both sides of (27), we obtain:
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from eq. (28).
Next, by writing:
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from eq. (30). A solution this differential equation:
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Making use of the reverse process to obtain ΦI, we finally obtain the solution (14) 
from eqs. (21), (26), (31), and (33).
 –  when iν λ= :
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from eqs. (23) and (24), respectively.
Applying the discrete operator ∇α to both members of eq. (35):
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from eq. (36). A solution this differential equation:
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Therefore, we have eq. (15) from eqs. (21), (34), (38), and (40). 
Remark 1. In the same way as the procedure in subsections we use σ = –τ +(1/2) and 

replacing τ by –τ, then we have other solutions eqs. (16) and (17) different from eqs. (14) and 
(15), respectively, if τ ≠ 0. 
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The DFS of the homogeneous HAE

Theorem 7. Let Φ ∈{Φ : 0 ≠ | Φα | < ∞; α ∈ ℝ}. Then the homogeneous HAE:
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has particular solutions of the equations:
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Proof. Taking ϕ = 0 in Theorem 6:
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for n =  –i(λ)1/2 and n = i(λ)1/2 instead of eqs. (32) and (39), respectively. Therefore, we obtain 
eq. (42) for eq. (46) and eq. (43) for eq. (47).

Remark 2. In the same way, we use σ = –τ +(1/2) and replacing τ by –τ, then we have 
other solutions eqs. (44) and (45) different from eqs. (42) and (43), if τ ≠ 0.

Example. In the case γ = 0, and τ = – 1/2, and ϕ(z) = z, wi have:
zλΦ + Φ = (48)

from eq. (13) the solution of equation (48):
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by using eq. (14). The function obtained in eq. (49) provides the equation eq. (48). 
We plotted 2-D graphs of eq. (49), as shown in fig. 1.

Conclusion

In this article, we first considered the HAE obtained from the radial part of the reduced 
equation by applying the method of separating variables in the spherical co-ordinates of the 
Schrodinger equation. We use the nabla discrete fractional operator for hydrogen atom type 
equations. We consider homogeneous and non-homogeneous HAE. We have obtained many 
different DFS for these equations. In previous time, no one achieved these solutions of HAE. 
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We will obtain particular solutions of the same type singular ordinary and partial differential 
equations by using the discrete fractional nabla operator in future works.
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Figure 1. The 2-D dimension solutions od eq. (49), using h1 = 0.2 and h2 = 0.3
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