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This paper is to investigate microscale flow and transfer between the rotor and the 
flank for rotary engine. The rotor and flank are simplified to two disks in order to 
study flow field and temperature field conveniently. The paper takes analysis of 
steady laminar flow and heat transfer between two disks separated by a gas-filled 
gap due to machining tolerance. A 3-D multi-physical coupling model is used, in-
volving velocity slip, temperature jump, rarefaction, and dissipation. A solution 
based on commercial code COMSOL is derived and the results are used to illustrate 
the effects to velocity field, temperature distribution, disks' torque, and Nusselt num-
ber based on the governing parameters. The paper also investigates the effects of 
different modified Knudsen number on flow field and temperature field. 
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Introduction  

A Wankel-type rotary engine due to its planar geometry increases the sealing line and 

the multiple vertices. A small scale engine cancels some parts in order to reduce the difficulties 

of manual assembly, including side sealing. Therefore, side sealing has to depend on machining 

quality for the rotor and the flank. Manufacturing tolerance and surface roughness are not in-

evitable. So, the gap generated by fabrication tolerance must exist and the gap value varies 

among certain range. In order to study the mechanism of the flow field, the rotor and flank are 

simplified to two disks in order to study conveniently. 

The problem of flow and heat transfer over two disks is one of the most popular prob-

lems of fluid mechanic in the last several decades. When device or space size for flow approaches 

the molecular mean free path for fluid, changes of flow and heat transfer phenomena lead to a 

breakdown of macro-solutions due to the increasing predominant position of surface conditions. 

The investigation is aimed at flow and heat transfer between two parallel disks. The 

distinguishing characters of the study are surface velocity slip and temperature jump. The im-

portant of heat transfer from a rotating body can be ascertained in cases of various types of 

machinery [1, 2]. The first solution to the classical problem of rotating disk was obtained by 

von Karman and Angew [3]. In this work, authors considered the hydrodynamic behavior gen-

erated by an infinite disk and gave a formulation. Next, they proposed famous transformations, 

which reduced the governing PDE to ODE. Their transformations had been widely adopted to 

study flow problem [4-6]. 

–––––––––––––– 
* Author’s, e-mail: qinzhaoju2@126.com 

mailto:qinzhaoju2@126.com


Qin, Z
 

Fluid velocity at a boundary determinates the flow field, because it has been of major 

concern in fluid mechanics. A commonly accepted model is based on the hypothesis that the 

fluid velocity is the velocity of the surface it is in contact with. This is referred to as the no-slip 

velocity condition. Navier [7] and Goldstein [8] proposed velocity slip proportional to surface 

shearing stress. As systems approach microscopic scales, the well-established continuum laws 

are broken [9]. In dilute gaseous flow the failure of the continuum description is quantified by 

the Knudsen number, defined here as the ratio of the molecular mean free path, λ, to the channel 

gap, δ. The regime 0 ≤ Kn ≤ 0.1 is referred to as slip-flow, no-slip is captured by Kn = 0. For 

Kn > 0 or Kn ≈ 0.1, the continuum description is expected to fail [10], and the regime 

0.1 < Kn ≤ 10 is referred to as transition regime [11]. 

Although in the same physical sense as slip in micro-devices, the term apparent ve-
locity slip is used to describe an interface velocity in a conjugate two-domain flow through a 

porous wall. Apparent velocity slip induced by a lubricated disk in a Newtonian fluid was de-

rived [12, 13]. Slip of polymer solutions, emulsions, particle suspensions in viscometers may 

form a lower-viscosity, depleted layer of liquid [14-16]. Apparent wall slip was first applied on 

rotating disk by Wein [17]. Characteristic of roughness is considered to give rise to velocity 

slip. The partial slip condition for rough surface of a single rotating disk was solved by using 

mathematical model [18]. 

Temperature jump is another important characteristic in micro/small devices. This is 

evident from first comprehensive review in Zandergen and Dijkstra [19] to current application 

on this subject. Hanzik and Bruneau [20] used numerical method to investigate axially sym-

metric flow of a viscous incompressible fluid between two infinite rotating disks. Szeri et al. 
[21] made experiments to observe velocity flied of water between finite rotating disks with and 

without through-flow. The flow between two finite rotating disks enclosed by a cylinder was 

investigated both numerically and experimentally [22]. By means of a combined asymptotic-

numerical analysis, the relationship of the axisymmetric flow between large and finite coaxial 

rotating disks to the von Karman similarity solution was studied [23]. For temperature jump, 

there are also a lot of related researches. The method of matched asymptotic expansions was 

used to obtain information about heat transfer from a non-isothermal disk rotating in a quiescent 

compressible gas by Magyari et al. [24]. The heat transfer phenomenon in the steady flow of 

an incompressible micropolar fluid between a rotating and a stationary disc was examined [25]. 

Arora and Stokes [26] have been obtained exact numerical solutions for the steady-state ax-

isymmetric flow of an incompressible Newtonian fluid between two parallel infinite rotating 

disks for different speed ratio and Reynolds number.  

In this paper, steady laminar and heat transfer generated by two infinite parallel disks 

are considered. The lower disk and the upper disk rotates with angular velocity Ω and sΩ, re-

spectively. The analysis involves velocity slip, temperature jump, rarefaction and dissipation. 

A solution based on commercial code COMSOL is derived and the results are used to ilustrated 

the effects to velocity field, temperature distribution, disks' torque, and Nusselt number based 

on the governing parameters. 

Geometric and mathematic model 

Problem description 

Figure 1 represents schematically a physical model of two parallel infinite disks with 

the gap δ. The δ is determined by machining tolerance. The lower disk and the upper disk rotates 

with angular velocity Ω and sΩ, respectively. The parameters can be zero, positive, or negative. 
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A cylindrical rotating frame (r, θ, z) is fixed on 

the lower disk and rotating with it. The velocity 

components in r, θ, z are u, v, w. The lower disk is 

insulated and the upper disk is maintained at uni-

form temperature, operating range from 293 K to 

550 K. The determination of the flow field and 

temperature distribution determined the torque 

required to rotate disks of finite radius and local 

Nusselt number. Since the lower surface is insu-

lated, heat transfer is solely due to dissipation. 

Density, viscosity, and thermal conductivity are 

assumed constant when temperature keeps un-

changed. The fluid is assumed to be a methanol 

and air mixture. 

The commercial rotary engine O.S. Pi-49 

produced in Japan is chosen to measure surface 

temperature. The lower disk represents the rotor and the upper disk represents the cover. The 

rotor temperature is inferred from the surface temperature measured by thermal imager Fluke 

Ti 55 and heat transfer coefficient based on material properties. The temperature for rotor sur-

face as initial condition is input into the governing equations. 

Flow field 

Governing equations 

The continuity and the Navier-Stokes equations of motion for laminar axis-symmetric 

flow at cylindrical rotating frame are shown by: 
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where p is the pressure and n – the kinematic viscosity. 

Boundary conditions 

The tangential and radial velocity components contain slip on both disks. The Max-

well slip model [27] is used to describe the velocity slip approximately. There is no slip in the 

axial component. So, the velocity boundary conditions can be given by: 
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Figure 1. Disk configuration 
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where λ is the molecular free path and σu – the experimentally determined tangential momentum 

accommodating coefficient.  

Temperature field 

Governing equations 

The energy equation is: 

 
2 2

2 2

1
p

T T T T T
c u w k u

r z r rr z
 

      
              

 (5) 

where Φ is the dissipation function, given by: 
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Boundary conditions 

Temperature discontinuity referred to as temperature jump occurs at non-insulated 

surfaces in micro-channels. The Smoluchowski model for gases relates the temperature jump 

to the temperature gradient at the surface [27]. In this paper an insulated lower disk and an 

upper disk maintained at uniform temperature, T0, are considered. The boundary conditions for 

this case are: 
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where Pr is Prandtl number, γ – the specific heats ratio, and σT – the energy accommodating 

coefficients. The σT is uncertain like σu. They are nearly identical for air [28]. 

Similarity transformation 

Flow field 

Following von Karman’s solution to the single infinite rotating disk, variables trans-

form the governing partial differential equations to ordinary differential equations [29]: 

 
2 2 2 2d ( ) 1

, , ( ), 2 ( ), ( )
d 2

z H p
u r rG w G P r


       

  
             (7) 

where β is constant. The similarity variables in eq. (7) automatically satisfy continuity eq. (1). 

After similarity transformation, the Navier-Stokes eqs. (2)-(4), become: 
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where Re is the Reynolds number, defined: 
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Based on similarity variables transformation, boundary conditions 1-6 transform to: 
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where Kn is Knudsen number defined:  

 Kn
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and Kn*considering the Kn and tangential momentum accommodating coefficient is a modified 

Knudsen number defined: 
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The Kn and (2 – σu)/σu always appear together in the flow field, so the paper takes the 

product of Knudsen number and (2 – σu)/σu as a single parameter Kn*. When σu = 1 occurs, Kn* 

is equal to Knudsen number. 

Disk torque 

The torque is needed to drive the disk to rotate. For a disk of finite radius, r, the torque 

can be given by: 

 2

0 0

2π d 2π d

r r

r r r r
z




 


  

 T  (14) 



Qin, Z
 

Disk power 

The product of tangential shearing force and tangential disk velocity determine disk 

power due to velocity slip. Since force and velocity are related to radial distance, disk power 

requires integration of the product over the radial distance, ξ. The dimensionless power 

( ,0)
P  for the lower disk and the upper disk ( ,1)

P  can be given by eq. (7), respectively. 
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Temperature field 

The dimensionless variables and similarity transformation are defined based on the 

analysis of no-temperature jump case [30]: 
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Maximum temperature 

The temperature of the lower disk ( ,0)  is acquired by eq. (23). This is the maximum 

fluid temperature, given by eq. (20): 

  2( ,0) (0) (0)M N     (20) 

Nusselt number 

According to the definition, the Nusselt number of the upper disk can be given: 
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The heat transfer coefficient, h, is calculated by equating Fourier’s law with Newton’s 

law of cooling. 

Solution 

The paper takes method of multi-physical field coupling to analyze steady laminar 

flow and heat transfer between two disks based on code COMSOL. The size of mesh cells 

determines the total number of mesh cells, which significantly affects the computation time. 

Thus, for time and cost saving purpose, fewer cells and larger mesh cell size are preferred, as 

long as the accuracy of simulating physical property changes are not too much compensated. 

In order to generate better grid, the geometry is split into five domains as shown in fig. 2. In 

order to study the grid independent, the elements number chosen are 42190, 53376, and 76458, 

respectively. The results suggest that the temperature and velocity have no obvious change 

when the elements number is up to 53376. Basic parameters are show in tab. 1. 
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Figure 2. The mesh grid of disk 

Table 1. Basic parameters 

Parameter Value 

Thermal  
conductivity 

0.0404 W/mK 

Ratio of  
specific heats 

1.5 

Dynamic  
viscosity 

2.6·10–5 Pa.s 

Kinematic viscosity 3.48·10–5 m2/s 

Density 0.747 kg/m3 

Heat capacity  
at constant pressure 

1800 J/kgK 

Upper temperature 502 K 
 

Results and discussion 

Velocity 

Figure 3 represents velocity field for different Kn* at 5000 rpm. The characteristic of 

velocity field for different Kn* can be shown by fig. 3 when the speed constants at 5000 rpm. 

 

Figure 3. The velocity field for different Kn* at 5000 rpm; (a) Kn* = 0, (b) Kn* = 0.01, (c) Kn* = 0.1,  

(d) Kn* = 0.5 (for color image see journal web site) 
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The velocity field trend is basically the same for all the Kn*. The velocity decreases with in-

creased Kn*. The velocity at Kn* = 0.5 almost decreases by 100 times compared with the one 

at Kn* = 0. 

The radius of the disks are chosen as 1.25·10–5 m. Because the cover is static, s, is 

equal to 0. Figure 4 shows that axial velocity increases at radial direction for the same value of 

z, Kn*, speed. An increase in Kn* can come about as a result of a decrease in axial velocity due 

to the increase in velocity slip. Figure 5 depicts the effect of the slip on the velocity magnitude 

at z- direction when δ = 0.5 μm and r = 8·10–6 m. The decreasing rate of velocity magnitude is 

slowed down when Kn* changes from 0 to 0.3 due to increasing slip. Figures 4 and 5 indicate 

that the existence of slip in the direction of r and z leads to small curve gradient for Kn* = 0.3. 

 

Figure 4. Axial velocity for different speed at Kn* 

 

Figure 5. Velocity for different Kn* 

That is, velocity initial value at z = 0 decreases for the increasing in Kn* and velocity 

value at z = 0.5 increases for the increasing in Kn*. The Kn* = 0 represents continuous fluid. 

Figure 4 shows that velocity increases with the increased speed. The results indicate positive 

correlation between the slip and the speed.  

Figure 6 shows that velocity increases with the rise of the speed at Kn* = 0.1. The 

presented results show that the velocity variation tendency to the speed is less than the one to 

the Kn*. The results indicate that the velocity due to the variation of the Kn* is more apparent 

relative to the influence of the speed. 

Disk torque 

Figures 7 and 8 show the influence of Re, δ, speed,and Kn* on the lower and upper 

disk torques, T*(0) and T*(1), respectively. There are two ways to change Reynolds number. 

One is change of the speed and the other is change of the spacing between disks. The value of 

s is selected as 0 according to actual engine. It means the upper disk is stationary. Rarefaction 

and the effect of modified coefficient, σu, are investigated by five values of Kn* ranging from 0 

to 0.3. Figure 7 shows that the relation between T*(0) and Reynolds number due to the speed 

for δ = 0.5 μm. The lower increases as the small Reynolds number is on the increase for all 

values of Kn*.  

The upper disk torque shows a reverse trend to that for the lower disk torque. How-

ever, the value of torque for the upper and lower disk increases monotonically with Reynolds 

number. In order to examine Kn*, it is necessary to increase Kn* and velocity slip, which results 

in an increase in rarefaction and a decrease in σu. A decease in T*(0) and T*(1) with increasing 

Kn* is accordance with expectation.  
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Figure 6. The velocity field for different speed at Kn* = 0.1; (a) rotation speed = 10000 rpm,  
(b) rotation speed = 15000 rpm, (c) rotation speed = 20000 rpm, (d) rotation speed = 25000 rpm  
(for color image see journal web site) 

 

Figure 7. The lower torque 

 

Figure 8. The upper torque 

Surface temperature  

Figure 9 presents the temperature jump for the middle surface between the lower disk 

and the upper disk at 25000 rpm. The common characteristic is that temperature distribution 

diffuse from the center to the outer. It is also shown that the temperature jump focuses on the 
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central region. The jump area is reduced and more concentrated from Kn* = 0.5 to Kn* = 0.05. 

However, the value of the temperature jump become smaller. 

 

Figure 9. The temperature jump for different Kn* at 25000 rpm; (a) Kn* = 0.5, (b) Kn* = 0.2,  
(c) Kn* = 0.1, (d) Kn* = 0.05 (for color image see journal web site) 

Figure 10 presents the temperature jump on the middle surface between the lower disk 

and the upper disk at different rotational speed for Kn* = 0.1. The temperature jump happens 

on the center and the temperature decreases at small region. 

 

Figure 10. The temperature jump for different speed at Kn* = 0.1; (a) speed = 5000 rpm,  
(b) speed = 15000 rpm (for color image see journal web site) 
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Nusselt number  

Figure 11 presents the Nusselt number for the values of Kn* from 0.05 to 0.3 at dif-

ferent speed. The Nusselt number changes non-linearly with ξ, reaching an asymptotic value, 

which depends on Reynolds number (speed), and Kn*. The Nusselt number happens oscillation 

and oscillation gradually tend to be gentle from Kn* = 0.05 to Kn* = 0.3. The position occurred 

vibration back continually until Kn* at 0.3. Increasing Kn* decreases the Nusselt number. In-

fluence of speed on Nusselt number is vanished at Kn* = 0.3. The change law of the Nusselt 

number for the high speed is more stable than that of low speed.  

 

Figure 11. The Nusselt number for different Kn*; (a) Kn* = 0.05, (b) Kn* = 0.1, (c) Kn* = 0.2,  

(d) Kn* = 0.3 (for color image see journal web site) 

Conclusions 

 The simulation to the flow field and temperature distribution for rotating disks separated 

by a micro-gap is obtained using multi-physical coupling method. The two transformed 

non-linear fourth order coupled ODE are solved numerically. 

 Dimensionless disks torque depend on two parameters: Kn* and Re. Increasing Kn* de-

creases the lower disk torque. The effect of the parameters on the lower disk torque is 

monotonic. 

 Dimensionless temperature and local Nusselt number depend on four parameters: Kn, Re, 

Pr, and γ*. 
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 In general, temperature rise due to dissipation is small. For the conditions shown in fig. 7 

the maximum jump is 0.04 K. Relatively high temperature rise is associated with large Ω. 

 The local Nusselt number at the upper disk changes greatly with the radial distance, ξ, 

reaching an asymptotic value which depends on Re and Kn*. This phenomenon is analo-

gous to the fully developed asymptotic Nusselt numbers characteristic of macrochannels. 

The variation of the asymptotic value with Re and Kn does not follow a well defined pat-

tern. 
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