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The present paper deals with the introduction of Backlund transformations by ex-
tended Harry-Dym flow and with the aid of the extended version of the Riccati 
mapping method is obtained new solutions. Then, we give the Backlund transfor-
mation of the Schrodinger flow and obtain its the Bonnet surface. In finally, results 
obtained with the mathematical model are evaluated by applying to mathematica.
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Introduction

Backlund transformation, which was introduced in 1880 by A. V. Backlund, can be 
used to create a series of solutions to a PDE from a known trivial solution. Moreover, a non-lin-
ear PDE into another PDE can be transformed by Backlund transformation. In this respect, a 
powerful method for generating solutions to non-linear PDE is the application of the Backlund 
transformation. On the other hand, a transform which leaves a PDE invariant is called an au-
to-Backlund transformation and a different second solution the same PDE can be transformed by 
this transformation, [1]. The Backlund transformations, which are n times to a particular solution 
of sine-Gordon equation, are written by a family of solutions of sine-Gordon equation. With the 
aid of the Bianchi’s permutability formula through purely algebraic means can be achieved by 
these solutions, in [2]. Due to the aforementioned features, numerous studies have been carried 
out on Backlund transformations from past to present. For example, Palmer studied Backlund 
transformations for surfaces in [3], Schief gave analog of Darboux’s Backlund transformation 
for isothermic surfaces in [4] and Goulart obtained Backlund and Ribaucour transformations for 
some special surfaces in [5]. Korpinar gave numerical solutions of heat-like equation in [6] and 
Ijaz studied Heat Transfer Analysis in MHD flow in [7]. Gokmen studied the general formulation 
for inextensible flows of curves in n-dimensional Euclidean space in [8]. Kwon gave new equa-
tions of Evolution of inelastic plane curves, and Inextensible flows of curves and developable 
surfaces in [1, 9]. Additionally, there are many works related to curves [6, 10-23].

In applied differential geometry, the flow of a space curve and surface, and the time 
evolution of a space curve or surface constructed by flow can be called inextensible, if its arc-
length does not change. Since flow of curves has a very important place in the field of indus-
try, there are many studies on evolving curves in the direction of their curvature vector field,  
[7, 8]. Therefore, we deal with the introduction of Backlund transformations by extended Har-
ry-Dym flow in this study. Also this work has been organized: firstly, we tersely summarized 
the basic concepts of flows and Backlund transformations; then, we give relationships between 
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Backlund transformations and a Bonnet surface; it is also presented some special theorems for 
this transformation; at the end, results obtained with the mathematical model are evaluated by 
applying to MATHEMATICA.

Preliminaries

Let us recall some known concepts Backlund transformations for some curve flows in 
R3 Assume that γ is a smooth curve parameterized by arc-length s, torsion τ of γ(s) is constant 
and its Frenet frame is {t, n, b} in R3. We suppose that a solution of the differential equation: 

d = sin
d

C
s
ξ ξ κ− (1)

is ξ = ξ [s; κ(s);C] where C is any constant. Thus, a curve which is parameterized by arclength 
s and constant torsion τ:

2 2

2( ) = ( ) (cos sin )Cs s
C

γ γ ξ ξ
τ

+ +
+

t n (2)

Moreover, we will choose the geometric curve flow as follows throughout the article:

t fγ = t + n + rbb (3)
where b, f, and r depend on κ and τ of the space curve γ. 

In a given geometry, if we take γ(s, t) as a special curve, then γ~(s, t) can be written as 
another curve, which related to the following Backlund transformation:

( , ) = ( , ) ( , ) ( , ) ( , )s t s t s t s t s tγ γ α β χ+ + +t n b (4)

In this paper, we choose that both curve flows for γ and γ~ are governed by the same 
integrable system, that means the curvatures of the curves γ~ determined by the flow (4) satisfy 
the integrable systems as for the curves [24].

Space curve flows and Backlund transformations in R3

Let γ: I → R3
 be a curve with arc-length parameter s, {t, n, b} be the Serret-Frenet 

frame and κ and τ be curvature and torsion of the space curve γ. Also, we assume that the ve-
locities b, f, and r depend on κ and τ of the spatial curve γ. In this respect, the integrable flows 
for space curves in R3: 

t fγ = + +n b rtb (5)
Moreover, we know that the Serret-Frenet equation of this curve:

= , = , =s s sκ κ τ τ− + −t n n t b b n (6)
Take into consideration the eq. (5), we immediately have the time evolutions:

=

1=

1=

=

t

t

t

t

ff
s s

ff f
s s s s

f f f
s s s s

g g
s

τ κ τ

ττ κ τ τ κ
κ κ

ττ τ τ κ
κ κ

κ

∂ ∂   − + + +   ∂ ∂   
∂  ∂ ∂ ∂      − − + + + + − +      ∂ ∂ ∂ ∂      

∂  ∂ ∂ ∂      − + − + + − +      ∂ ∂ ∂ ∂      
∂ − ∂ 

rt n b

n r t r b

b t r n

r

b

b b
b

b
b b

b

(7)
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where g = |γp|denotes the metric of the curve γ. Thus, the equations for κ and τ with a simple 
calculation are obtained immediately [24]:

2
2 2

2

1= d

= ( ) d 2

f ff s
t s s s s s

fs f
t s s ss

τ ττ τ τ κ κτ κ
κ κ

κ κ τκ τ κ τ κ

∂ ∂  ∂ ∂ ∂  ∂   + + − + + +    ∂ ∂ ∂ ∂ ∂ ∂    
∂ ∂ ∂ ∂ ∂

+ − + − −
∂ ∂ ∂ ∂∂

∫

∫

b
b b b

b
b b

(8)

Bonnet surfaces as geometric space curve flows

Let us start by assuming γ is a surface and the standard unit normal vector field on γ is 
ω ̄γ. The fundamental forms of the surface γ:

2 2

2 2

d 2 d d d
d 2 d d d
s s t t
s s t t
+ +

+ +

I = E F G
II = e f g

(9)

where I and II are the first fundamental form, fff, and the second fundamental form, sff, respec-
tively. The E, F, G are the coefficients of the fff of the surface and e, f, g are the coefficients of 
the sff. 

Definition 4.1. Let us start by assuming γ is a surface. Then, paratmerized form of 
A-net on this surface satisfying the conditons the conditions E = G, F = 0, f = c = constant ≠ 0 
is called an A-net [10].

Theorem 4.2. A surface is a Bonnet surface if and only if it has an A-net [10].
Lemma 4.3. Let γ be geometric space curve flows:

( )
( )
( ) 2 2 2

, = 1

, =

, =

s s

s t

t t

g

g

g f

γ γ

γ γ

γ γ + +

E =

F = r

G = rb

(10)

Lemma 4.4. Let γ be be geometric space curve flows. If γ is regular surface:

, 0f ≠b (11)

Moreover, eq. (5) imply:
( , )s t fγω = −b nb (12)

Theorem 4.5.

1=

1

tt t

t

t

ff f f
s s s s

f ff f
s s s s

ff f
s s

τγ τ τ κ τ κ
κ κ

ττ τ κ τ
κ κ

τ κ τ

  ∂ ∂ ∂  ∂     − + + − + + − + +       ∂ ∂ ∂ ∂       
  ∂ ∂ ∂  ∂     + + + + − + + + +       ∂ ∂ ∂ ∂       

 ∂ ∂    + − − + − +    ∂ ∂    

n

b

t

b b
b b r r r

b
b b r r b

b
r b r b (13)

Lemma 4.6. Let γ be geometric space curve flows:
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( ) 1, =

1

tt

t

fs t f f
s s s

ff f
s s s

ff f
s s

γ
τϖ τ τ κ

κ κ

ττ τ κ
κ κ

τ κ τ

  ∂ ∂ ∂    − + + − + +     ∂ ∂ ∂     
  ∂ ∂ ∂    + − − + + − + +     ∂ ∂ ∂     

 ∂ ∂    + − + − +    ∂ ∂    

b

n

t

b
b b r

b
b b r

b
r b b (14)

Theorem 4.7. Let γ be geometric space curve flows. The γ is a Bonnet surface if and 
only if: 

2 2

0
1f

ff f c
s s

τ κ τ

=

+ =

∂ ∂   − + − + =   ∂ ∂   

r

b

b
r b b

(15)

The extension of Harry-Dym flow

Let us recall the Extended version of Harry-Dym flow given by Qu [24]. The extended 
version of Harry-Dym flow:

1/2
tγ τ −= b (16)

with the choicess b = r = 0 and f = τ –1/2 in the space curve flow (5). We note that the curve flow 
with constant curvature κ is considered here. In the case of κ = 1:

s
κ∂

=
∂
r

b (17)

that the torsion of satisfies the extended Harry-Dym equation [25]. Hence, the time evolution 
of frame vectors:

( )

( )

1/2 3/2

1/2 1/2 3/2

3/2 1/2 3/2

1=
2

=

1=
2

t s

t ss

t s ss

τ τ τ

τ τ τ

τ τ τ τ

− −

−

− −

− −

 + − 

 − − 

t n b

n t b

b t n

(18)

We will obtain Backlund transformation of the Schrodinger flow. Let us recall follow-
ing equation: 

( , ) = ( , ) ( , ) ( , ) ( , )s t s t s t s t s tγ γ α β χ+ + +t n b (19)

As a consequence of the eq. (19), we immediately have the equations:

{ }
{ }

1/2 1/2

1/2 1/2 3/2

1/2 1/2 1/2 3/2

= (1 ) ( ) ( )

= ( )

( )

( ) ( )

s s s s

t t s

t ss

s ss t

γ α βκ β ακ χτ χ βτ

γ α βτ χ τ

β ατ χ τ τ

τ α τ β τ τ χ

−

−

− − −

+ − + + − + +

 + + + 

 + − − − + 

 + + + − + 

t n b

t

n

b





(20)
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Thus, we immediately have the normal vector of Backlund transformation of the 
Schrodinger flow: 

( ){
( ) }

{
( ) }

1/2 1/2 1/2 3/2

1/2 1/2 3/2

1/2 1/2

1/2 1/2 1/2 3/2

1/2 1/2

= ( ) ( ) ( )

( ) ( )

( ) ( )

(1 ) ( ) ( )

(1 ) ( )

s s ss t

s t ss

s t s

s s ss t

s t s

γϖ β ακ χτ τ α τ β τ τ χ

χ βτ β ατ χ τ τ

χ βτ α βτ χ τ

α βκ τ α τ β τ τ χ

α βκ β ατ χ τ

− − −

−

−

− − −

−

 + − + + − + − 

 − + − − − + 

 + + + + − 

 − + − + + − + ⋅ 

⋅ + − − −

t

n



( ){
}

3/2

1/2 1/2( ) ( )

s

s t s

τ

β ακ χτ α βτ χ τ −

 − − 

 − + − + +  b (21)

From previous equations:

= [(1 ) ( ) ]
[( ) (1 ) ( ) ]

[( ) ( ) ]

ss s s s

s s s s

s s s

γ α βκ β ακ χτ κ
β ακ χτ α βκ κ χ βτ τ

χ βτ β ακ χτ τ

+ − − + − +
+ + − + + − − + +

+ + + + −

t
n

b



(22)

and

{ }( )
{ }

{ }
{ }

1/2 1/2 1/2 1/2 3/2

1/2 1/2 1/2 1/2 3/2

1/2 1/2 1/2 3/2

1/2 1/2 3/2

1/2

= ( ) ( )

( ( ) ( )

( ) ( ) )

( ( )

(

ts t s t sss

t s t ss s

s ss t
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γ α βτ χ τ β ατ χ τ τ κ

α βτ χ τ κ β ατ χ τ τ

τ α τ β τ τ χ τ

β ατ χ τ τ τ

τ α

− −
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− − −

−

−

   + + − − − − +   

   + + + + − − − −   

 − + + − + + 

 + − − − + 

+ +

t

n



{ }1/2 1/2 3/2) ( ) )s ss t s
τ β τ τ χ− − + − +  b (23)

Theorem 5.1. Let γ be Backlund transformation of the Schrodinger flow. The γ is a 
Bonnet surface if and only if:

( ) ( ){ } ( ){
( ) }

( ) ( ){ }

22
1/2 1/2 1/2 1/2 3/2 1/2 1/2

2
1/2 3/2 2 2 2
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s

α βτ χ τ β ατ χ τ τ τ α τ
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−
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−
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+ + +

=

( ) ( ){ }1/2 1/2 3/2 = 0ts ss
τ β τ τ χ− − + − + 

(24)

and
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Proof. First fundamental form of Backlund transformation of the Schrodinger flow:
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 − + + − + + + − ⋅ 

 ⋅ − − − − + − ⋅ 

 ⋅ + + { }
{ }

1/2 1/2 3/2

1/2 1/2 1/2 3/2

}( ( )

( ) ( ) )

t ss

s ss t s

β ατ χ τ τ τ

τ α τ β τ τ χ

−

− − −

 − − − +  

 + + + − + 

Application Mathematica 

Let us recall the curvature κ and torsion τ given by Qu [24]: 
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2
2 2

2

1= d

= ( ) d 2

f ff s
t s s s s s

fs f
t s s ss

τ ττ τ τ κ κτ κ
κ κ

κ κ τκ τ κ τ κ

∂ ∂  ∂ ∂ ∂  ∂   + + − + + +    ∂ ∂ ∂ ∂ ∂ ∂    
∂ ∂ ∂ ∂ ∂

+ − + − −
∂ ∂ ∂ ∂∂

∫

∫

b
b b b

b
b b

(27)

From previous equations, Hasimoto transformation:

= , = exp[ ( , )d ]i t s sφ κη η τ (28)

Let b = – κ, f = κτ. Then r = –1/2κ2, and ϕ satisfies the mKdV system:
23 = 0

2t sss sφ φ φ φ+ + (29)

Consider the traveling wave variable:

( , ) = ( ), =s t q s Htφ ς ς − (30)

Then, using eq. (30), eq. (29) is changed into an ordinary differential equation for q(ς):
23( ) ( ) ( ) ( ) = 0

2
Hq q q qς ς ς ς′ ′ ′′′− + + (31)

We can give the extended generalized Riccati mapping method to obtain the solution 
of eq. (29). By balancing | q(ς)|2q′(ς) with q‴(ς) in eq. (29), we yield N = 1. 

Therefore, the solution of eq. (31):

1 0 1
( )( ) = , 0
( )

Gq a a a
G

ςς
ς
′ 

+ ≠ 
 

(32)

Equation (32) can be re-written:
1

1 0( ) = ( ) ( )q a hG f gG aς ς ς− + + +  (33)

where f, g, h are arbitrary constants, g ≠ 0 and G′(ς) = h + fG(ς) + gG2(ς) is auxiliary equation.
By substituting eq. (33) into eq. (32), we find a set of algebraic equations for a0, a1, f, 

g, h, and Q from coefficients of Gk(ς) and G–k(ς) (k = 0, 1, 2,...). Solving the system of algebraic 
equations by using software MATHEMATICA:

2
0 1

1= , = 2 , = ( 8 )
2

a if a i H f gh− − − (34)

One of solutions of eq. (33) is (f = 3, g = 2, h = 1), fig. 1: 

(a) (b) (c)

Figure 1. Shape of solution for imaginary part of eq. (35); (a) in 3-D, (b) in 2-D (t = 0), and  
(c) its contour
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2sec
2

= 2

2 tanh
2

h
q i if

f

ϕ

ϕ

  ∆ ∆     − + 
  ∆ + ∆        

(35)

where Δ = f2 – 4gh. 

Conclusion

A non-linear PDE into another PDE can be transformed by Backlund transformation. 
In this respect, a powerful method for generating solutions to non-linear PDE is the application 
of the Backlund transformation. In this study, we give relationships between Backlund trans-
formations and a Bonnet surface. It is also presented some special theorems for this transfor-
mation. At the end, results obtained with the mathematical model are evaluated by application 
Mathematica.
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