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This paper studies the analytical and numerical solutions for (2+1)-D Konopelchen-
ko-Dubrovsky equation. It also examines the performance of the modified simplest
equation method and the cubic B-spline scheme on this model. Many explicit wave
solutions are found by using the analytical technique. These solutions allow study-
ing the physical properties of this model. The comparison between the analytical
and numerical solutions are discussed to show which one of cubic B-spline scheme
families is more accurate in finding the numerical solutions of this model.

Key words: analytical and numerical wave solution, B-spline schemes,
solitary wave solution, modified simplest equation method

Introduction

Non-linear PDE are the most suitable technique to express many significant phenom-
ena. It is also able to study the mechanism and physical properties of these phenomena. To
this end, exact and numerical solutions are particularly significant. Indeed, a lot of physicists
and mathematicians have been investigating the exact and numerical solutions. Up to now,
many numerical and solitary schemes have been formulating, such as generalized extended
tanh-function method, Khater method, modified auxiliary equation method (modified Khater
method), Wronskian technique, linear superposition principle, and Hirota direct method [1-15].

Recently, for studying the exact traveling wave solutions, the modified simplest equa-
tion method has been proposed to investigate many kinds of solutions such as rational, expo-
nential, hyperbolic, trigonometric, kink, rogue, lump, bilinear, and solitary [16-20]. Moreover,
the complexion solutions had been investigated such that it defines as an interaction of expo-
nential and trigonometric waves [21-25] while the B-spline schemes have been being used to
study the numerical solutions of many various forms of non-linear PDE [26-30].

In this paper, we study (2+1)-D Konopelchenko-Dubrovsky equation derived by
Konopelchenko BG and Dubrovsky VG [31]. The classical form of his equation is given:
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b~ 3[4, 0]+ 320, 30 [, ax—6bpp, =0 1)

where a, b are arbitrary constants and ¢ = ¢(x, y, ¢) is an analytical function in x, y, ¢. Equation
(1) when, (a = 0) becomes the Kadomtsev-Petviashvili (KP) equation while, when (b = 0) be-
comes the modified Kadomtsev-Petviashvili (mKP) equation. With the following dependent
variable transformation a = 0, ¢ = 2/bIn(¢).., eq. (1) transforms:

(D, D, =D} =30} o =0 )
While, the (2+1)-D Konopelchenko-Dubrovsky system takes the following form
[32-35]:
S,—S.. —6bSS, EFERE S.=3R,+3aS,R=0
2 €)
S, =R,

where a and b are arbitrary constant and S(x, y, £), R(x, y) represent a wave function. Using the
traveling wave transformation S(x, y, ) = S(¢), R(x, v, {) = R(¢), where (£ = x + y + ct) on the
system (3), obtains:

cS'—S'"—6bSS'+%a2 S?S'-3R'+3aS'R=0

(3a)
S'=R'
Integration of the second equation in the previous system gives:
S=R (3b)

Substituting eq. (3b) into the first equation in the system of eq. (3a) and then integrate
the obtained equation with zero constant of integration:

2
(c—3)S—(3b+%ajS2+a?S3—S”:O (4)

Application

In this part, we apply the modified simplest equation and the B-spline methods [36-40] to
(2+1)-D Konopelchenko-Dubrovsky equation.

Modified simplest equation method

According to the general solutions that suggested by the method and balance rule
between S” and $°, we get N =1 and the general solution of eq. (4):
N

(&)= ;a,-f(é)" =%+ao tayf (&) )

where a is arbitrary constant and f{¢) satisfies the following auxiliary equation
'@ =a+ 20+ ufi)]
where o, A, u are arbitrary constants. Substituting eq. (5) and its derivatives into eq. (4). and

collecting all terms of the same power of &) where {i = -3, -2, -1, 0, 1, 2, 3}. Solving the
obtained algebric equations by MAPLE or MATHEMATICA softwares:
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— Family 1
a, :%, a =2—’u, a, :2_(1, c=3+1*-4au, bzla(—1+/i)
a a a 2
where 1 or a #0, a#0,Ae R—{l}, and 3+ 4% #dau
— Family 2
A 2o 1 2 a
=——, a4, =0,a_,=——, c=—(6-A" +4au|, b=——
“ a “ - a ¢ 2( ﬂ) 2
where a#0, a=0, and 6—12;&40:/1
— Family 3
A 2u 1 2 a
ag=—, ay=——, a_ =0, c=—(6-1"+4au), b=——
0T T g ! 2< ,u) 2

where 1 #0, a#0, and 6—A% = 4au

According to the value of parameters in Family 1, we get the solitary wave solutions

of'eq. (1) in the following formulas:

Case 1
When, 4 = 0, we get:
When ou > 0
M =ﬂCsc{Z\/@[x+y+3+t(3—4a,u)]}
a
When ou <0
_ Log| &
5, = 4\-au Csch[2{«/—a,u [x+y+t(3—4ay)]¢%[]}]
a
Case 2
When, a = 0, we get:
When 1> 0
- 22 :
u {_1 + eﬂ[x+y+9+t<3+ﬂ )],u}
When 1 >0
2 1
Sa = ; At eﬂ[x+y+9+t(3+ﬂz )} N l —H
7
Case 3

When A #0,a#0,u#0
When ou > 2*and u >0

(6)

()

®)

©)
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2
(/12 —4(1}1)860{;\/—}.2 +4ou [x+y+ 3+t(3 + A7 —405/1)}}
S5 = (10)

a[z—\/—ﬁ +4a,uTan{;«/—12 + dap [x+y+19+t(3+/12 —40@}}}
(12 —4alu)Csc{;\/—/12 +4ou [x+y+l9+t(3+/12 —4a,u)}}2

S, = (11)

g{,l—\/—/f +4ayCot{;\/—/12 +4au [x+y+19+t(3+12 —4a,u)}}j

When 4au > A*and <0

S5 (32%/—/12 +4ayTan{E\/—/12 +4au [x+y+.9+t(3+12 4ay

a

4
- - (12)

A++-A2 +4a,uTan{2\/—/12 +4au [x+y+l9+t(3+l2 4a,u
Sg = (3/1+\/—/12 +401,UC0'E{E«/—/1 +4au [x+y+l9+t 3+/12 —4ou ]

4o
A++-A7 +4a,uCot{2\I—Az +4ou [x+y+,9+t(3+/12 —405/1

According to the value of parameters in Family 2, we get the sohtary wave solutions
of eq. (1) in the following formulas:

+

13)

Case 1
When, 4 = 0, we get:
When ou >0
Sy :—@Cot{@[x+y+9+t(3+2ay)]} (14)
Sio =—2?Tan{@[x+y+l9+t(3+2ay)]} (15)
When ou <0

2\—au

S = » Coth{\/—a,u[x+y+t(3+2a,u)]$

> (16)

Log[&]}

S, = 2 v;a,u Tanh{d—a,u [x+y+t(3+2a,u)]$LogT[]9]} (17)
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Case 2
When A #0,a#0,u#0
When 4au > A*and u >0

4au

(18)
2
A—+-A7 +4ayTan{;w/—/12 +4au |f£+)/+ L9+{3 —/12+2a,uH}

1
S3=—| -1+
a

1 4
Sy =—| -4+ oH - (19)
a
A—y-A% +4a,uCot[;\/—ﬂz +4ou {x+y+3+{3—};+2ayJH
When 4au > A*and u <0
-1 4
Sis=—| A+ A (20)
a

2
A+qf-A7 +4a,uTan{;w/—/12 +4au {x+y+l9+{3—ﬂ'2+2a,uj:|}

1 4
Sye=—| 1+ o - 1)
a
A++l—A7 +4a,uCot{;\/—/12 +4au {x+y+3+t[3—/12+2a,u]:|}

According to the value of parameters in Family 3, we get the solitary wave solutions
of'eq. (1) in the following formulas:

Case 1
When, 4 = 0, we get:
When ou >0
S, = 2\/:7 Tan{\/@[x+y+.9+t(3+2ay)]} (22)
Sig = 2\/:_” Cot{\/@[x+y+l9+t(3+2a,u)]} (23)
When ou <0

Log[S]

5,y = 2,/;0!# Tanh{ [~au [x+y+t(3+2a,u)]$—} (24)

2
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2./— Log|$
Sy = an Coth {J—a,u {(x+y+t(3 + 20{,&1))1%[]}} (25)
a
Case 2
When, a = 0, we get:
When 4 > 0
A
Sy ==1-1- 1 (26)
a ﬂ[x+y+.9—5t(—6+ﬂz ):}
y7i
When 4 <0
1 1
Sy =—| A+2uq—1+ ; (27)
a ﬂ{x+y+37at(—6+ﬂ,2)}
y7,
Case 3
When 1 #0,a#0, u#0
When 4au > A*and u >0
J-A2+4 ’
S,s :ﬂTan{%./—/12+4a,u {x+y+19+{3—%+2a,uﬂ} (28)
a
J-A2+4 ’
Sy :ﬂcot{%1/—12+4ay {x+y+3+t[3—%+2ayﬂ} (29)
a
When 4au > A*and u <0
i 2
S5 _1 YNy +4a,uTan{%,/—/12 +4au x+y+.9+{3—%+2a,u H (30)
a
i 2
She :l 24 +4/-A7 +4ayC0t{%1l—/12 +4au x+y+3+t[3—%+20w} }J (31
a

Cubic B-spline scheme

In this section, we apply the cubic B-spline numerical scheme to (2+1)-D
Konopelchenko-Dubrovsky equation study the numerical solution of this model. The numerical
solution that obtained by this scheme can be written as a linear combination of cubic B-splines
basis functions. Consider the following grid a = & < & <..< &, < &, = b as the uniform par-
tition of solution &, — & = (b — a)/n = h where i = 0,...n — 1. The numerical solution of eq. (4)
has the following general form:

S(f):ZCiBi(g)

(32)
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where ¢;, (i =—1,...,n + 1) are arbitrary constants and B«(¢), (i = —1,...,n + 1) are cubic B-spline
function which satisfy the following condition:

(e-¢,),

(&2-&)
0,

ég € |:§i72 ’ ‘/:-Kifl :I

(6-&a) ~4(6=61) . cefeng]
(§i+2 _5)3 _4(§i+1 _5)3 " ée[gi’éiﬂ]

fe l:é:iH :§i+2:|

Otherwise

where the coefficent of of has the following shown value in the tab. 1:

Table 1. Values of Bi(&), B/ ($), and B/ (&)

¢ ¢ G & Ein Eina
B(®) 0 1 4 1 0
BI(®) 0 3/h 0 —3/h 0
B'(®) 0 6/h? —12/k? 6/h? 0

According to these values of B(¢), B/(¢), and B/(&):

s"(¢)

”»

S(f) =¢;_ +4c +c;

6 12
Ci1 _h_2

—C;
2 vi+l
h

(33)

(34)

(33)

(36)

Substituting eqgs. (34)-(36) into eq. (4) with the following initial condition that ob-

tained from eq. (37):

where

a=—4, u=1, a=-6, 9=1, 1=0, c=-5, b=3

S= —%Tanh(Zf)

5(0)=0

s(1)=

S'(0)=

2Tanh [2]

s'(1)= —%Sech[z]z

G37)

We get a system of equations. Solving this system of equations we obtained results

presented at tab. 2 and on figs. 1-5:
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Table 2. Values of exact and approximate solutions

Value of & Approximate Exact Absolute error

¢=0 —1.734723475 -10°"% 0 1.734723475976 -10°'*
¢=0.1 —0.0721748973954985 —0.13158354681660267 0.05940864942110417
=02 —0.13997442420104717 —0.2532993081701499 0.11332488396910273
=023 —0.2009696888883744 —0.35803304466535685 0.15706335577698244
=04 —0.2549185485599881 —0.442691801785659 0.18777263161857782
=05 —0.3033871007264205 —0.5077294373038432 0.20434233657742273
£=0.6 —03494022279038176 —0.5557697380081035 0.2063675101042859
=07 —0.453963142954458 —05902344321348416 0.19280683075323546
£=0.8 —0.453963142954458 —0.6144457029376476 0.16048255998318955
=09 —0.529365211731331 —0.6312040085641788 0.1018387968328478
&=1.0 —0.6426850533838779 —0.6426850533838779 0

—0.10.¥

-3 -2

-1

Figure 1. The 3-D and contour plots of eq. (6), when [ =4, u =2,v=1,a=-6,y = 3]

1 -0.10

. -0.05

Figure 2. The 3- and 2-D and plots of eq. (7), when [a =4, u=2,v=1,a=-6,y = 3]
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Figure 3. The 3-D and contour plots of eq. (8), when [a =0, u =2,v=1,A=3,a=-6,y = 3]
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Figure 4. The 3- and 2-D plots of eq. (10), when [a =3, u=1,v=1,A=2,a=—-6y =3]
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Figure 5. The 3- and 2-D plots of eq. (11), when [ =3, u =1,v=1,A=2,a=—-6,y =3]
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Conclusion

In this paper, we used the modified simplest equation method and the cubic B-spline
scheme to (2+1)-D Konopelchenko-Dubrovsky equation. We succeed in obtaining analytical
and numerical solutions of the model. We obtained different forms of solutions such as shock
waves, singular, solitary waves, periodic singular waves, plane waves, and others. We obtained
novel and distinct, solitary wave solutions of this model. Some of our obtained solutions can be
reduced to the known solutions in some instances. We also obtained the approximate solutions
and discuss both solutions to show the absolute value of the error tab. 2. The results show the
effectiveness of the Adomian decomposition method for interval near zero. Some solitary and
approximate solutions are sketched to investigate more of the physical properties of this model
figs. 1-5. The performance of both methods shows useful and powerful in studying many of
non-linear partial differential equations.
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