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In this paper, the practice of two types of mapping methods are used to solve the 
time fractional Phi-4 equation by means of conformable fractional derivative. The 
solutions are derived using Jacobi’s elliptic functions for two different value of the 
modulus and are obtained the some soliton solutions. The found solutions are iden-
tified bright optical soliton, dark soliton, singular soliton, combo soliton solution, 
and periodic solutions.
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Introduction 

Homogenous and non-homogenous differential equations have been briefly studied in 
the literature since they act as a bridge between mathematics and physics [1-12]. Recently, there 
has been considerable interests and significant theoretical developments in fractional calculus 
used in many fields and in fractional differential equations and its applications [13-38]. Ekici et 
al. [13] used the first integral method by using conformable fractional derivative for getting the 
optical soliton solutions. Tchier et al. [14] obtained solutions of the time fractional reaction-dif-
fusion equations with residual power series method. Rezazadeh et al. [15] found travelling 
wave solution of conformable fractional generalized reaction Duffing model by generalized 
projective Riccati equation method. Inc et al. [16] investigated approximate solution of some 
non-linear equations by using Residual power series method. Eslami [17] obtained the exact 
traveling wave solutions to the fractional coupled non-linear Schrodinger equations and in [18] 
are studied on numerical solutions for the Caputo-Fabrizio fractional heat-like equation. Many 
more researches related to fractional derivatives can be saw in [19-38].

In this work, we analyze the time fractional Phi-4 equation by means of conform-
able fractional derivative operator [19, 20] to form optical solitons using the various types of 
mapping methods. Recently, there are a lot of important of this equation in particle and nuclear 
physics [20]. The some wave solutions of the Phi-4 equation with a non-linear variant are ana-
lyzed via the Weierstrass elliptic function process. Akter and Akbar [21] is applied the modified 
simple equation method to obtain the analytical solutions of the Phi-4 equations. Bhrawy et 
al. [22] are investigated the spectral solutions of time dependent non-linear Phi-4 equations 
by using Jacobi-Gauss-Lobatto collocation process. Triki and Wazwaz [23], are analyzed the 
envelope solitons for the generalized Phi-4 equations. Exact analytical solutions of where in 
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said equation are obtained using tanh method with fractional complex transform in [24]. Alqu-
ran et al. [25] applied the residual power series (RPS) process to find the series solution of this 
equation. In this work, the found solutions are identified bright optical soliton, dark soliton, sin-
gular soliton, combo soliton solution, and periodic solutions. There are several applications for 
the mapping method and its diversities [26-31]. Two main group of solutions are investigated 
via mapping methods. These are Jacobian elliptic functions (JEF) and periodic wave solutions 
(PWS). When modulus m → 1 or m → 0 the JEF re-edited as hyperbolic functions and trigono-
metric functions.

The time fractional Phi-4 equation is presented [19, 25]:
( ) 2 3 = 0, 0, 0 < 1t xxq q q q tη ε σ η− + + ≥ ≤ (1)

where qt
(η) is the conformable derivative operator, ε and σ are real valued constants. In [32] 

scientists studied conformable type of fractional derivative in 2014 as a new definition of local 
fractional operator. It is very easier to work with this fractional derivative. Recently, several 
studies have been done related to conformable type of fractional calculations [33-38].

The definition of conformable fractional derivative of order η ∈ (0, 1) defined [32]:
1
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Some of the features of conformable fractional derivative [32, 33]:

D = , Rt t tη α α ηα η− ∀ ∈ (2a)

D ( ) = D Dt t tfg f g g fη η η+ (2b)
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Analysis of mapping method

Assume the general non-linear PDE:
( ) (2 )[ , , , , ,...] = 0t x xx ttA q q q q qη η (3)

where q is an unknown function depending on x and t, A – the polynomial in q = q(x, t) and the 
sub-indices represent the partial conformable fractional derivatives.
 – Suppose the traveling wave variable:

( , ) = ( ), = tq x t u x Q
η

φ φ
η

− (4)

Then, from eq. (4), eq. (3) is turn to an ODE for u(ϕ): 
( , , , ,...) = 0B u u u uφ φφ φφφ (5)

where the sub-indices represent the ordinary derivatives with respect to ϕ. 
 – Consider the solution of eq. (5):

=0
( ) = ( )

N
i

i
i

u a Gφ φ∑ (6)
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where an ≠ 0 and G(ϕ) can be expressed: 

[ ]2 2 41( ) = ( ) ( )
2

G fG gG hφ φ φ′ + + (7)

where h, g, and f are arbitrary constants.
 – N is found by balancing between the non-linear terms and the highest order derivatives in 

eq. (5).
 – Replacing eq. (6) together with eq. (7) into the eq. (5), then equating each coefficient 

of the polynomials to zero, give a set of algebraic equations for ai (i = 1, 2,...N), h, g, 
f, and Q.

 – Solving the obtained system, we obtain values for ai (i = 1, 2,...N) and Q. Then, the solutions 
of eq. (5) are obtained.

It is clear that if N ∈ Z, we can easily apply the above steps to find the some of JEF 
and PWS solutions. If N ∉ Z, the some of solutions are obtained as rational statements including 
JEF and PWS solutions.

Applications for the time-fractional Phi-4 equation

Mapping method
By placing eq. (4) into eq. (1), are obtained non-linear equation:

2 2 3( 1) = 0Q u u uε σ′′− + + (8)

Assumed the solution of eq. (8) is demonstrable as a finite series: 

=0
( ) = ( )

N
j

j
j

u Gφ α φ∑ (9)

where G(ϕ) satisfies eq. (7), ϕ = x – Q(tη/η) and αj for j = 1, N ¯¯¯  are values to be definited.
By balancing with in eq. (8), is obtained N = 1.
We can select the solution of eq. (9):

0 1( ) = ( )q Gφ α α φ+ (10)

Substituting (10) into (8), collecting the coefficients of G(ϕ), and solving the obtaining 
system, the following groups of some solutions are found.

One of the four groups of values:
2

0 1= 0, = , =
g f

Q
f f
ε ε

α α
σ

−
(11)

Type 1. G(ϕ) = sn[ϕ; m] or G(ϕ) = cd[ϕ; m]. So f  = –(m2 + 1), g = 2m2, and h = 1. Then, 
the PWS of eq. (8):

2

2

2( ) = [ ; ]
( 1)

2( ) = [ ; ]
( 1)

mu sn m
m

mu cd m
m

εφ φ
σ

εφ φ
σ

− +

− +

(12)

When m → 1, eq. (12) is rewrote in the form of dark soliton solution of eq. (1):
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22 2( , ) = tanh( )
2 2

tq x t x
ηε ε
ησ

− −
−

− −
(13)

and in the form of singular soliton solution:
22 2( , ) = cos

2 2
tq x t x
ηε ε
ησ

 − −
 −
 − − 

(14)

Type 2. G(ϕ) = cn[ϕ; m]. So f  = 2m2 – 1, g = –2m2, and h = 1 – m2. Then, the PWS of 
eq. (8):

2

2( ) = [ ; ]
2 1

mu cn m
m

εφ φ
σ

−

−
(15)

When m → 1, eq. (15) is rewrote in the form of bright optical soliton solution of eq. (1) :

22( , ) = sech 1 tq x t x
ηε ε
ησ

 −
− − 

 
(16)

Type 3. G(ϕ) = dn[ϕ; m]. So f  = 2 – m2, g = –2, and h = m2 – 1. Then, the PWS of eq. (8):

2

2( ) = [ ; ]
2

u dn m
m
εφ φ

σ−
(17)

When m → 1, eq. (16) is rewrote in the form of bright optical soliton solution of eq. (1):

22( , ) = sech 1 tq x t x
ηε ε
ησ

 −
− − 

 
This solution is the same as eq. (16):
Type 4. G(ϕ) = cs[ϕ; m]. So f  = 2 – m2, g = 2, and h = 1 – m2. Then, the PWS of eq. (8): 

2

2( ) = [ ; ]
2

u cs m
m
εφ φ

σ−
(18)

When m → 0, eq. (18) is rewrote in the form of singular periodic solution of eq. (1) :
22( , ) = cot

2
tq x t x
ηε ε
ησ

 −
 −
 
 

(19)

and when m → 1, eq. (18) is rewrote in the form of singular soliton solution of eq. (1) :

22( , ) = csch 1 tq x t x
ηε ε
ησ

 
− − 

 
(20)

Type 5. G(ϕ) = ns[ϕ; m] or G(ϕ) = dc[ϕ; m]. So f  = – (1 + m2), g = 2, and h = m2. Then, 
the PWS of eq. (8):

2

2( ) = [ ; ]
(1 )

u ns m
m
εφ φ

σ− +
(21)

and

2

2( ) = [ ; ]
(1 )

u dc m
m
εφ φ
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(22)
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When m → 0, eqs. (21) and (22) are rewrote, respectively, in the form of the singular 
periodic solution of eq. (1):

22( , ) = csc 1 tq x t x
ηε ε
ησ

 
− + 

−  
(23)

and

22( , ) = sec 1 tq x t x
ηε ε
ησ

 
− + 

−  
(24)

When m → 1, eq. (22) are rewrote in the form of the singular soliton solution of eq. (1):
22 2( , ) = coth

22
tq x t x
ηε ε
ησ

 +
 −
 −  

(25)

Modified mapping method
Consider the solution of eq. (9):

1
0 1 1( ) = ( ) ( )u G Gφ α α φ β φ−+ + (26)

where G(ϕ) satisfies eq. (7).
Substituting (26) into (9), collecting the coefficients of G(ϕ), and solving the obtaining 

system, the following groups of some solutions are found:
One of the sixteen groups of values:

2 2

2 2

0 1 1

2 2 2

2

( 3 2 ) ( 3 2 )
2

18 18
= 0, = , =

18 3 2
=

18

g f gh g f gh
h

f gh f gh
g

f gh f gh
Q

f gh

ε ε

α α β
σ σ

ε ε

− −
− −

−

− − +
−

(27)

Type 1. G(ϕ) = sn[ϕ; m] or G(ϕ) = cd[ϕ; m]. So f  = – (m2 + 1), g = 2m2, and h = 1. Then, 
the PWS of eq. (8):

2 2

2 2 2
2[ ( 1) 6 ]

( 1) 36 1( ) = ( [ ; ] [ ; ])

m m m
m m
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m

ε

φ φ φ
σ

− + −
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−
(28)

and
2 2

2 2 2
2[ ( 1) 6 ]

( 1) 36 1( ) = ( [ ; ] [ ; ])

m m m
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m

ε

φ φ φ
σ

− + −
+ −

−
(29)

When m → 1, eq. (28) rearranged in the form of the combo periodic singular solution 
of eq. (1):

2

2 24 42( , ) = tanh( ) coth( )
4 4

t tq x t x x
η η

ε
ε ε

η ησ

 − + − +
− − − 

− −  

(30)
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Type 2. G(ϕ) = dn[ϕ; m]. So f  = 2 – m2, g = –2, and h = m2 – 1. Then, the PWS of eq. (8):

( )

2 2 2

2 2 2
2

2 2 3 4( 1)

(2 ) 36( 1)
( ) = [ ; ] 1 [ ; ]

m m

m m
u dn m m nd m

ε

φ φ φ
σ

 − − − − − 
− + −

− −
(31)

When m → 1, eq. (31) rewrote in the form of bright optical soliton solution of eq. (1):

2
22( , ) = sech 1 tq x t x

ηε ε
ησ

  −
− −  

  
(32)

Type 3. G(ϕ) = cs[ϕ; m]. So f  = 2 – m2, g = 2, and h = 1 – m2. Then, the PWS of eq. (8):

( )

2 2 2

2 2 2
2

2 2 3 4(1 )

(2 ) 36(1 )
( ) = [ ; ] (1 ) [ ; ]

m m

m m
u cs m m sc m

ε

φ φ φ
σ

 − − − 
− − −

− −
(33)

When m → 0, eq. (33) rearranged in the form of the combo periodic singular solution 
of eq. (1):

2

2 28 84( , ) = tanh coth
8 8

t tq x t x x
η η

ε
ε ε

η ησ

    − + − +    − − −
   − −     

(34)

Graphical representation of the solutions

The surface graphics of the obtained solutions are showed in the figs. 1 and 2 by using 
MATHEMATICA.

We wrote the some of solutions found for the presented time-fractional Phi-4 equation 
via conformable fractional derivative operator. Besides we showed 3-D graphics for some of 
solutions in figs. 1 and 2. The graphics above were drawn for ε = 1, σ = 2, µ = 0.75.
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Figure 1. The surface graphics for the |q(x, t)|2 analytical solution of the time-fractional Phi-4 equation 
obtained with mapping method; (a) eq. (14), (b) eq. (23)
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Figure 2. The surface graphics for the |q(x, t)|2 analytical solution of the time-fractional Phi-4 equation 
obtained with modified mapping method; (a) eq. (32), (b) eq. (34)

Conclusion

In this paper, the mapping methods are used to find new soliton solutions of the 
time-fractional Phi-4 equation by using conformable fractional derivative. When modulus  
m → 1 or m → 0 the Jacobian elliptic functions rearranged as trigonometric functions and hy-
perbolic functions. The existences of solutions derived from these functions are all guaranteed 
through constraint conditions that are also listed besides the solutions. We say that the presented 
method is suitable to examine the many problems located in science and engineering.
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