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The MHD free convection flow of non-Newtonian power-law fluids over a hori-
zontal plate subjected to a constant heat flux is studied. The results are presented 
for various values of the three influential parameters, i. e. the generalized Hart-
mann number, the generalized Prandtl number, and the non-Newtonian power-law 
viscosity index. Increasing the Hartmann number increases the thermal bound-
ary-layer thickness and the surface temperature and consequently decreases the 
wall skin friction and Nusselt number. A lower generalized Prandtl number  results 
in a larger skin friction coefficient and higher wall temperature as well as thicker 
thermal boundary-layer. The viscosity index is predicted to influence the flow con-
ditions depending on the value of generalized Hartmann number. At high general-
ized Prandtl number numbers, by decreasing non-Newtonian power-law index, the 
wall skin friction, temperature scale, and thermal boundary-layer thickness are in-
creased and the Nusselt number is decreased, while the opposite trend is observed 
for low generalized Prandtl number. A general correlation for the Nusselt number 
is derived using the numerical results.
Key words: horizontal plate, MHD, non-Newtonian, natural-convection,  

power-law fluid, similarity solution

Introduction

The buoyancy-driven convection has important applications in many engineering and 
industrial processes such as nuclear reactors, biochemical processes, drying systems, etc. The 
free convective boundary-layer flows over flat surfaces have been extensively investigated [1]. 
In contrast, the natural-convection flow and heat transfer over horizontal plates had received 
fewer attentions. The boundary-layer above a heated horizontal plate is formed by an induced 
pressure gradient resulted from the buoyancy force perpendicular to the plate. Thus, the mech-
anism of natural-convection flow over horizontal heated surfaces is different from the vertical 
ones. A numerical and experimental investigation of natural-convection flow above a horizontal 
plate heated with a constant flux has been reported in [2]. Samie et al. [3] analytically ana-
lyzed the natural-convection heat transfer below a hot horizontal isothermal flat strip of infinite 
length. Kozanoglu and Rubio [4] introduced a Nusselt number correlation for the natural-con-
vection from a downward facing horizontal heated plate in which the characteristic length is 
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defined based on the thermal boundary-layer thickness. The natural-convection flows over a 
semi-infinite horizontal plate subjected to variable heat flux or variable wall temperature have 
been presented in [5, 6]. Guha and Samanta [7] performed an integral analysis to investigate 
natural-convection heat transfer over a semi-infinite horizontal plate subjected to either a vari-
able wall temperature or variable heat flux.

Many industrial fluids such as petroleum products, polymers, molten plastics, and 
slurries are known to have non-Newtonian characteristics in which the shear rate is not directly 
proportional to the shear stress. The non-Newtonian behavior of these fluids mostly exhibits 
itself by a shear-dependent viscosity. Due to the growing use of such fluids, the phenomenon of 
natural-convection has been widely investigated for the flow of these types of fluid on vertical 
[8-12], inclined [13], and horizontal surfaces [14-18]. Different studies have been reported on 
the steady natural-convection flow of power-law fluids over vertical surfaces with constant tem-
perature [8], constant wall heat flux [9, 10], and under mixed thermal boundary conditions [11]. 
The problem of unsteady free convection flow over a vertical flat plate at constant temperature 
immersed in a power-law fluid is analyzed in [12]. The free convection of non-Newtonian fluids 
over an inclined plate with variable surface temperature is studied in [13], where the effects of 
power-law viscosity and suction/injection through the surface have been investigated.

A similarity solution of natural-convection of non-Newtonian power-law fluid about a 
horizontal impermeable surface with a non-uniform heat flux distribution in the porous medium 
has been reported in [14]. In addition, Gorla and Kumari [15] have investigated free convection 
problem for the horizontal plate subject to variable wall temperature or heat flux distribution 
embedded in non-Newtonian power-law fluid-saturated porous media. In their work, the ef-
fects of surface mass transfer was studied for different conditions employing finite difference 
approach to solve the transformed boundary-layer equations. Guha and Pradhan [16] used the 
finite difference method to study the problem of natural-convection boundary-layer flow of a 
non-Newtonian power-law fluid over an isothermal horizontal plate. Their results showed that 
the hydrodynamic boundary-layer is influenced by the non-Newtonian nature of fluid while 
the thermal boundary-layer remains almost unaffected for a given generalized Prandtl number.

The flow of electrically conducting fluids, e. g., liquid metals, suppress under the in-
fluence of magnetic fields. This effect, the MHD phenomenon, is widely used to control the heat 
transfer processes of electrically conducting fluids [17, 18]. Subsequently, MHD can mitigate 
or neutralize the development of flow instabilities [19-21]. Many researchers have studied the 
MHD natural-convection flow and heat transfer on a plate. The effect of magnetic fields on nat-
ural-convection flow past vertical or inclined plates are extensively studied [22-26]. The buoy-
ancy-induced flow over horizontal plates embedded in a non-Newtonian fluid saturated porous 
medium under the action of a transverse magnetic field is investigated in [26, 27]. Samanta and 
Guha [28] studied the natural-convection of an electrically conducting fluid above a horizontal 
plate with constant heat flux in the presence of a magnetic field. The results of magnetic field 
effect in reducing the Nusselt number and skin friction coefficient was presented.

The objective of the present study is to investigate the effects of a transverse magnetic 
field on natural-convection flow and heat transfer of an electrically conducting non-Newto-
nian fluid over a semi-infinite horizontal plate heated with constant heat flux. The similarity 
transformations are applied to the governing boundary-layer equations to reduce them to a set 
of ODE. A numerical solution using the finite difference method is obtained. The effect of the 
generalized Hartmann number on the non-dimensional velocity and temperature fields in both 
shear-thinning and shear-thickening fluids are then presented and discussed. Finally, using the 
results of numerical solutions, a general correlation for Nusselt number is proposed.
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Mathematical analysis

A semi-infinite horizontal plate situated in a quiescent ambient of non-Newtonian pow-
er-law fluid at a uniform temperature, T∞, and pressure, p∞, is considered. As shown in fig. 1, the 
plate is heated with a constant heat flux, qw, and 
is subjected to a unidirectional magnetic field, 
B, normal to the plate. Above the heated plate, 
a natural-convection boundary-layer is formed 
due to an induced pressure gradient. The prob-
lem under consideration is the steady 2-D lam-
inar incompressible natural-convection bound-
ary-layer flow and heat transfer over the plate.

The governing equations of MHD natural-convection flow over a horizontal surface 
are presented in eqs. (1a)-(1d). In addition the previously mentioned assumptions, the Boussin-
esq and boundary-layer approximations are applied. The x-co-ordinate is aligned along the plate 
from the leading edge and the y-co-ordinate is directed perpendicular to the plate:
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x y
∂ ∂

+ =
∂ ∂

(1a)

21 1u u p u Bu v u
x y x y y
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ρ ρ ρ
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The third term on the right-hand side of eq. (1b) represents the Lorentz force, j→× B→ 

obtained by the simplification of 1-D magnetic field. The magnetic Reynolds number was as-
sumed small and the induced magnetic field due to the motion of the electrically conducting 
fluid was neglected. The appropriate boundary conditions for eq. (1):

at 0,  0,  0,  w
k Ty u v q

y
− ∂

= = = =
∂

(2a)

at 0,  0,  0,  x u v T T∞= = = = (2b)

as  ,  0,  ,  y u T T P p∞ ∞→ ∞ → → → (2c)
In the aforementioned equations, u and v are the velocity components in the x- and 

y-directions, respectively, p – the hydrostatic pressure, T – the static temperature of the fluid,  
g – the gravitational acceleration, β – the volumetric coefficient of thermal expansion, and ρ, μ, 
α, and σ are the density, viscosity, thermal diffusivity, and electrical conductivity of the fluid, 
respectively.

The continuity eq. (1a) is automatically satisfied by introducing a stream function ψ, 
defined by u = ∂ψ/∂y and v = – ∂ψ/∂x. Then, the governing equations can be expressed:
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Figure 1. Schematic representation of the 
problem
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where the power-law model is used to describe the shear dependent viscosity behavior of the 
fluid. In this non-Newtonian model, the viscosity is assumed to be a function of shear rate as 

 µ = µ0|∂u/∂y|n–1, where n is a fluid property and is constant for a given fluid. The shear-thinning 
fluids (n < 1) have lower apparent viscosity at higher shear rates while in shear-thickening fluids 
(n > 1) there is an increase in the apparent viscosity at higher shear rates. In Newtonian fluids, 
the shear stress is directly proportional to the shear rate (i. e., n = 1).

The group theory analysis [29] provides that the following combinations of the vari-
ables give the absolute invariants:
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ψ ∞ ∞
−

− −
(4a)

Therefore, the similarity transformations can then be written:
( ) ( ) ( )

( ) ( ) ( )/

2/3 11/3
1 2

2 3 1/

/

3
0

3

3

,  ,  

,  

Dyx C x F T T C x G

P P C x H B B x M

η ψ η η

η η

−
∞

−
∞

= = − =

− = =
(4b)

where D, C1, C2, C3, and B0 are constants. Hence, there exist similarity solutions to this problem 
for a magnetic field with M = Bx1/3/B0 as a η function. As long as the direction of the magnetic 
field is normal to the plate, the simplified presented form of Lorentz force is valid. By letting 
M(η) = constant, in this paper, a non-uniform magnetic field as B = B0 D –1/2 x–1/3

 is investigated. 
By using the definition of η, we define a length scale as L = D –3/2. Hence, the constant value of 
M(η) is chosen as to maintain the dimension of B as Tesla.

By substituting the similarity transformations eq. (4b) into eq. (3), the boundary-layer 
equations are transformed into the following set of ordinary differential equations:
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where the prime sign denotes differentiation with respect to η. Also, the heat flux boundary con-
dition implies that –kC2DG′(0) = qw. The transformed governing equations and the associated 
transformed boundary conditions may be written:

21 ' *23 2 Ha 2 0nn F F FF F F H Hη−′′ ′′′ ′ ′+ − − +′ ′ − = (6a)

0H G′ − = (6b)
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with an appropriate choice of constants:
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Then, the generalized Hartmann number and Prandtl number appeared in eqs. (6a) and 
(6c), respectively, are given:
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where L = D–3/2 is the characteristic length scale. The generalized kinematic viscosity, n*, re-
duces to n 0 = µ0 /ρ for n = 1. Here, the parameter n 0 is dimensionless only for n = 1, but n* is 
dimensionless for all n.

Using eq. (7), the similarity transformations can be determined:
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where the generalized Grashof number is introduced, n ≠ 2:
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From the similarity transformation of stream function eq. (9b), dimensionless trans-
formed velocities can be obtained:
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Using the similarity transformation of temperature eq. (9c), the normalized local Nus-
selt number can be expressed:
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Then, the average Nusselt number over a length of L is Nu  ¯¯ 
0–L where NuL is the local 

Nusselt number at x = L.
The wall shear stress is given:
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The wall shear stress, τw, is constant all over the surface of the plate. Using the u-ve-
locity scale eq. (11a), the normalized skin-friction coefficient c*

fx can be defined:
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Results and discussion

The system of coupled eqs. (6a)-(6c) subject to boundary conditions eq. (6d) have 
been solved numerically using finite-difference method. Equations (6a)-(6c) were first reduced 
to a system of six ODE with appropriate boundary conditions. The central difference discretiza-
tion scheme was applied to the partial derivatives to obtain the finite difference equations. The 
algebraic equations have been linearized by employing Newton-Raphson procedure. The itera-
tive Thomas algorithm was used to solve the system of algebraic equations with a convergence 
criterion of 10–10 for relative difference between the current and previous iterations. The far-
field asymptotic value of similarity variable η∞ was increased till the unknown solutions at η = 
0 and η = η∞ attained unchanged values within a tolerance of 10–8. In the computational domains 
associated to each η∞, the solution was supposed to be independent of the mesh size when the 
relative changes of the numerical results were less than 10–4 when doubling the number of grids.

The effect of magnetic field on the dimensionless u-velocity profiles for three different 
values of the generalized Prandtl number Pr* = 0.1, 1, and 10 is presented in fig. 2 for a pseudo 
plastic fluid with n = 0.5, Newtonian fluids (n = 1) and a dilatant fluid with n = 1.5. As expected, 
fig. 2 shows that the maximum value of dimensionless u-velocity decreases with the increase 
of the generalized Hartmann number or Prandtl number. Furthermore, the location of maxi-
mum u-velocity approaches the leading edge with the increase of the generalized Hartmann 
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number. Generally, increasing the Hartmann number increases the boundary-layer thickness 
but, opposite trend was seen when low Hartmann numbers are applied for the cases with thick 
boundary-layers at high Pr* and low n values.

As can be seen in fig. 2, a thicker boundary-layer is resulted for a larger Pr*. It is 
observed that a larger n results in a larger and sharper peak velocity but a thinner bound-
ary-layer thickness. These can be explained by the fact that the effective viscosity decreases in 
shear-thickening fluids and increases in the shear-thinning fluids by the decrease in the velocity 
gradient. The low velocity gradients near the point of the maximum velocity produce low effec-
tive viscosities for shear-thickening fluids, which result in higher velocities with sharper varia-
tions. In comparison with Newtonian fluids, by the decrease in the shear rate starting from the 
plate surface to the boundary-layer edge, the viscous effects are presented in a thicker bound-
ary-layer for shear-thinning fluids and a thinner boundary-layer for shear-thickening fluids.

The dimensionless wall skin friction is plotted against generalized Hartmann number 
in fig. 3. As can be seen, increasing the Hartmann number decreases the friction coefficient. 
This is evident that higher values of generalized Hartmann or Prandtl numbers result in the 
smaller velocity scales, fig. 2, and thus lower values of normalized skin friction regardless of 
the value of n. Figure 3 shows that for Pr* = 10, the dimensionless skin friction coefficient var-
ies slightly with Hartmann number. Equivalently, the velocity gradient near the surface have a 
weak functionality of Hartmann number at Pr* = 10.
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Figure 2. Dimensionless u-velocity distribution for different n and Pr* for Ha* = 0, 5, and 10; 
(1) – Ha = 0, (2) – Ha = 5, and (3) – Ha = 10
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Figure 3 indicates that the wall skin fric-
tion decreases with n for Pr* = 10, while the 
reverse happens for Pr* = 0.1. As discussed 
earlier, increasing n at a fixed Pr* results in a 
higher peak velocity, fig. 2, but a thinner mo-
mentum boundary-layer thickness. The former 
and the latter both may reveal an increase in the 
velocity gradient F″(η). The aforesaid comment 
is consistent for Pr* = 10, but considering the 
effect of the power index n on the effective vis-
cosity, an apparently contradictory result is ob-
tained for Pr* = 0.1, where the velocity gradients 
has decreasing trends with increase in index n. 
On the other hand, by raising the values of the 
dimensionless velocity gradients at the wall to 
the power of n in order to obtain the skin fric-

tion, different trends for variations of [F″|η = 0 (n)]η are established depending on the value of  
F″|η = 0 and n.

The effect of magnetic field on the dimensionless temperature profiles is presented in 
fig. 4 for three different values of Pr* = 0.1, 1, and 10 for n = 0.5, 1, and 1.5. The value of the 
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n = 0.5, Pr = 0.1

n = 0.5, Pr = 1

n = 0.5, Pr = 10

n = 1, Pr = 0.1

n = 1, Pr = 1

n = 1, Pr = 10

n = 1.5, Pr = 0.1

n = 1.5, Pr = 1

n = 1.5, Pr = 10

0 1 2 3 4 5 6

G
(

)
η

η
0 1 2 3 4 5 6

η
0 1 2 3 4 5 6

η

5

4

3

2

1

0

G
(

)
η

3

2

1

0

G
(

)
η

2

1.5

1

0.5

0

(1)

(2)

(3)

Figure 4. Dimensionless temperature distribution for different n and Pr* for Ha* = 0, 5, and 10;   
(1) – Ha = 0, (2) – Ha = 5, and (3) – Ha = 10
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dimensionless temperature decreases continuously from a maximum value at the surface of the 
plate to zero at the edge of the thermal boundary-layer.

Figure 4 shows that the surface temperature increases with the increase of the gener-
alized Hartmann number due to the reduced fluid-flow. Subsequently, increasing the Hartmann 
number increases the thermal boundary-layer thickness and decreases the heat transfer rate, as 
presented in fig. 5. Also, as expected, with the decrease of the generalized Prandtl number, the 
dimensionless temperature scale increases while the thermal boundary-layer thickness decreas-
es. However, variations with n depends on the value of Pr* in which a lower n at Pr* = 1 or 10 
results in a larger temperature scale and a thicker thermal boundary-layer, while the contrary 
result is obtained for Pr* = 0.1. Similar to the variations of skin friction coefficient, the appar-
ently contradictory trend of viscosity index functionality of temperature can be justified by the 
presence of the effect of the power index n on the velocity field.

As presented in fig. 5, the reverse trends 
are established for the variations of dimension-
less Nusselt number with n, which is given by 
reciprocal of dimensionless wall temperature. 
As can be seen in fig. 5, the Nusselt number has 
a weak decreasing functionality with viscosity 
index n for Pr* = 0.1 and 1. This is resulted from 
the consequent effect of the Pr* value and the 
magnitude of changes in the effective viscosity 
with index n. The weak functionality of Nusselt 
number with n is due to negligible effect of the 
velocity field at the edge of the thermal layer 
for low Pr*.

The scale-ups between the viscous force, 
Lorentz force, and the inertia force propose a 
general correlation for the normalized Nusselt 
number in the form presented in eq. (15). The 
least square method is employed using about 1500 data from different curves of Pr*-constant, 
Ha*-constant, and n-constant. The following correlation for evaluating the Nusselt number is 
obtained for the ranges of 0.5 ≤ n ≤ 1.5, 0.1 ≤ Pr ≤ 10, and 0 ≤ Ha ≤ 10:

2
*3 3 *6 *4

* *2 *
4.81 7.55 Ha4.55 Nu Nu 1.63 Nu 1
Pr Pr Pr

n
n

x x x
+  + + = 
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Figure 5. Variations of dimensionless Nusselt 
number vs. Ha for different values of Pr* and n

Table 1. Comparison of the results of Nusselt number for Newtonian fluids

Pr Ha
Present study (for n = 1)  [28]

Numerical 
result Correlation Numerical 

result Correlation

0.01 0
3

0.169
0.149

0.153
0.136

0.168
0.148

0.161
0.135

0.7 0
3

0.522
0.421

0.527
0.429

0.522
0.421

0.542
0.453

100 0
3

1.325
1.157

1.287
1.209

1.319
1.159

1.297
1.083
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The correlation eq. (15) calculates the value of the Nusselt number with the relative 
error up to 7% occurring around the point Ha* = 10, Pr* = 0.1, and n = 0.5. A comparison of the 
values of Nusselt number for Newtonian fluids with the results of Samanta and Guha [28] is 
presented in tab. 1.

Conclusions

The present work studied the MHD natural-convection flow of power-law fluids over 
a horizontal plate with constant heat flux boundary condition. The flow was considered as 
steady, 2-D, laminar, and incompressible. The governing boundary-layer equations were trans-
formed to a set of ODE using similarity transformation. The finite difference method was em-
ployed to solve the coupled ODE for various values of generalized Hartmann number, general-
ized Prandtl number, and the non-Newtonian power-law viscosity index. A general correlation 
has been developed for Nusselt number using the numerical results. The flow and heat transfer 
characteristics show different behaviors from that of the Newtonian fluids. In summary, the 
important findings of the presented work are listed as follows.

The maximum value of the dimensionless velocity component along the plate de-
creases with the increase of the generalized Hartmann number. Moreover, the location of max-
imum velocity approaches the leading edge with the increase of the generalized Hartmann 
number. Generally, increasing the Hartmann number increases the boundary-layer thickness 
but, opposite trend was seen when low Hartmann numbers are applied for the cases with thick 
boundary-layers at high Pr* and low n values.

The maximum value of the velocity component along the plate decreases with the 
increase of the generalized Prandtl number. However, increasing the power-law viscosity index 
results in a larger and sharper peak velocity but a thinner boundary-layer thickness since the 
effective viscosity decreases in shear-thickening fluids and increases in the shear-thinning fluids 
by the decrease in the velocity gradient.

The wall skin friction coefficient decreases with the increase in Hartmann number 
especially at lower Pr*. Increasing the Hartmann number increases the wall temperature and 
thermal boundary-layer thickness and decreases the Nusselt number.

Decreasing the generalized Prandtl number increase the dimensionless skin friction, 
wall temperature, and thermal boundary-layer thickness. Nevertheless, variations with the vis-
cosity index depends on the value of the generalized Prandtl number in which decreasing the 
viscosity index at Pr* = 10 increases the wall skin friction, temperature scale, and thermal 
boundary-layer thickness, while the contrary results are obtained for Pr* = 0.1. The reverse 
trends are established for the variations of dimensionless Nusselt numbers with n.
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Nomenclature

B	 − magnetic field [= B0Gr*
x
(n–2/12)], [T]	

cf	 − skin-friction coefficient, [–]	
c*

f	 − normalized skin-friction coefficient  
(= Gr*

x
(2–n/6)cfx), [–]	

F	 − dimensionless stream function, [–]	
g	 − gravitational acceleration, [ms–2]	
G	 − dimensionless temperature, [–]	

Gr*	 − generalized Grashof number  
(= gβqw x4/ 2–n/kn 02/2–n), [–]	

H	 − dimensionless pressure, [–]	
Ha*	 − generalized Hartmann number  

(= B0[gβqw /k]–1/4[σ/ρ]1/2), [–]	
k	 − fluid thermal conductivity, [Wm–1K–1]	
L	 − length scale, [m]	
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