
Hashemi, M. S., et al.: On Fractional KdV-Burgers and Potential KdV Equations ... 
THERMAL SCIENCE: Year 2019, Vol. 23, Suppl. 6, pp. S2107-S2117 S2107

ON  FRACTIONAL  KdV-BURGERS 
AND  POTENTIAL  KdV  EQUATIONS 
Existence  and  Uniqueness  Results

by

Mir Sajjad HASHEMI a, Mustafa INC b,  
and Dumitru BALEANU c,d,e*

a Department of Mathematics, Basic Science Faculty, University of Bonab, Bonab, Iran 
b Department of Mathematics, Science Faculty, Firat University, Elazig, Turkey 

c Department of Mathematics, Faculty of Arts and Sciences, Cankaya University, Ankara, Turkey 
d Institute of Space Sciences, Magurele-Bucharest, Romania 

e Department of Mathematics and Statistics, Faculty of Science,  
Tshwane University of Technology, Pretoria, South Africa

Original scientific paper 
https://doi.org/10.2298/TSCI190101400H

Recently a new kind of derivatives, namely the conformable derivative is intro-
duced which have not many drawbacks of other fractional derivatives. Two types 
of KdV equations with conformable derivative are investigated in this paper. Ex-
istence and uniqueness of two different equations of KdV class with conformable 
derivatives are investigated. It is also shown that the invariant subspace method 
can be extended to find the exact solutions of these equations. 
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Introduction

It is well-known that finding exact solutions for fractional differential equations and 
dealing with to properties of fractional derivatives are very difficult than the classical ones. 
There are only few analytical methods which can obtain the solutions of fractional differential 
equations [1-24]. 

Against the ordinary and partial differential equation, there introduced different types 
of fractional derivatives, such as Riemann-Liouville, Grunwald-Letnikov, Caputo [25], Capu-
to-Fabrizio [26], Atangana-Baleanu [27] and more recently one, the conformable fractional 
derivative [28]. The chain rule is not valid for most of fractional derivatives whereas it is valid 
for later one.

One of the most important filed in the analysis of differential equations in existence 
and uniqueness investigation. There are numerous published papers for the existence and 
uniqueness of the solutions for fractional differential equations with different derivative types. 
Some researchers analysed this issue for different differential equations with Riemann-Liou-
ville derivative [29-31], Caputo derivative [32-34], and Caputo-Fabrizio derivative [35, 36]. 
To the best of the author knowledge, existence and uniqueness of solutions for conformable 
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fractional differential equations has not been studied in literature. There are some interesting 
papers which have investigated differential equations with fractional derivatives by analytical 
methods [37-41]. 

Some of the differential equations have many applications in various branches of sci-
ence and technology. The Korteweg-de Vries (KdV) equation and its variants are the most 
important ones which play an essential rule in the physics and engineering, specially in the 
modelling of waves on shallow water surfaces. Investigation on the solutions of these equations 
with fractional derivatives is the major interest of many researchers in literature [42-46].

Conformable fractional derivative

Khalil et al. in [28], introduced a new kind of fractional derivatives which have not 
many drawbacks of other fractional derivatives. This derivatives is called as the conformable 
fractional derivative. 

Definition 2.1 Let f is a real valued function defined on [a, b] × (0, ∞), then: 
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is called the conformable fractional derivative of f. 
Any real function in previous definition which corresponding limit exists, is well-

known as the α-differentiable function. There are some properties of conformable fractional 
derivatives which we list:

Theorem 2.1 [28] For any real constants a, b and α ∈ (0, 1] we have:
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Corresponding integral of the conformable fractional derivative is introduced as [28]: 

1

0 0

( )( , ) = ( , )d ( ) = ( , )d
t t

t f x t f x s s s f x s sα
α α −∫ ∫ (2)

Interactions between conformable integral and derivative operators are provided by 
two following lemmas: 

Lemma 2.1 [47] Suppose f: [a, b] × (0, ∞) → ℝ is continuous and 0 < α ≤ 1. Then:
( )( , ) = ( , )t t f x t f x tα α 

Lemma 2.2 [28] Let f: [a, b] × (0, ∞) → ℝ be differentiable and 0 < α ≤ 1. Then:
( )( , ) = ( , ) ( ,0)t t f x t f x t f xα α − 

The important point to note here is the validation of chain rule conformable fractional 
derivatives demonstrated by Abdeljawad [47]: 

Theorem 2.2 Suppose f is an α – the differentiable, and g – the differentiable functions. 
Then:

1( )( ) = ( ) ( ( ))t fog t t g t f g tα
α

− ′ ′
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Existence and uniqueness

In this section, we want to consider the existence and uniqueness of the conformable 
fractional Korteweg-deVries-Burgers (KdVB) equation:

2 3
1 1 1

1 12 3( )( , ) = 2t
u u uu x t u

xx xα ν µ
∂ ∂ ∂

− −
∂∂ ∂

 (3)

and conformable fractional potential KdV (PKdV) equation:
2 3

2 2
2 3( )( , ) =

2t
u uu x t
x xα

µ ∂ ∂  + ∂ ∂ 
 (4)

Imposing the conformable integral operator on both sides of eqs. (3) and (4): 
2 3

1 1 1
1 1 12 3( , ) ( ,0) = 2t

u u uu x t u x u
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respectively.
With the notations:

22 3 3
1 1 1 2 2

1 1 1 2 22 3 3( , , ) = 2 , ( , , ) =
2

u u u u ux t u u x t u
x xx x x

µν µ
∂ ∂ ∂ ∂ ∂ − − + ∂ ∂∂ ∂ ∂ 

K K (7)

Eqs. (5)-(6) become:
[ ]( , ) ( ,0) = ( , , ) , = 1,2m m t m mu x t u x x t u mα−  K (8)

for conformable fractional KdVB and PKdV equations, respectively. Now, it is required to 
show the Lipschitz condition for the operators K1 and K2 with respect to the third variable i. e.: 

( , , ) ( , , ) , = 1,2m m m m m m mx t u x t v u v m− ≤ −K K     (9)

Here the used norm is defined:
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The main part is finding the Lipschitz constants ℋ1 and ℋ2. Let us firstly consider the 
related operator of conformable fractional KdVB equation:  

1 1 1 1( , , ) ( , , )x t u x t v−K K 
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Let us to assume u1 and v1 are bounded, i. e. there is a positive constant κ1 > 0 such 
that max{|| u1||, || v1 ||} ≤ κ1. Then, their first, second, and third order derivative functions satisfy 
the Lipschitz condition and so, there is a constant ϑ1 ≥ 0.

1 1 1 1( , , ) ( , , )x t u x t v−K K 

2 2 2 3
1 1 1 1 1 1 1 1 1u v u v u vν ϑ ϑ µ ϑ≤ − + − + −     

2 3
1 1 1 1 1 1 1 1 1 1 1u v u v u v u vν ϑ ϑ µ ϑ≤ − + − + + −      

( )2 3
1 1 1 1 1 1 1 1 1 1 1u v u v u v u vν ϑ ϑ µ ϑ≤ − + + − + −         

( )2 3
1 1 1 1 1 12 u vν ϑ κ ϑ µ ϑ≤ + + − 

Therefore, we obtain the Lipschitz condition eq. (9) for eq. (3), provided that u1, v1 

are bounded:
2 3

1 1 1 1 1= 2νϑ κ ϑ µϑ+ + (11)

Likewise, we can consider the Lipschitz condition for the operator K2 corresponding 
to conformable fractional PKdV equation: 

2 2 2 2( , , ) ( , , )x t u x t v−K K 
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Without loss of generality, we can assume u2, v2, ∂u2 /∂x, and ∂v2 /∂x are bounded, i. e. 
there is a positive constant κ2 > 0 such that max{|| u2 ||, || v2 ||, || ∂u2 /∂x ||, ||v2 /∂x ||} ≤ κ2. Then, 
there is a constant ϑ2 ≥ 0 such that:

2 2 2 2( , , ) ( , , )x t u x t v−K K 
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Therefore, we obtain eq. (9) provided that u2, v2, ∂u2 /∂x, and ∂v2 /∂x are bounded:
2 3

2 2= µκ ϑ ϑ+ (14)
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Existence of a special solution

Here, we will use the notion of iterative formula to prove the existence of special 
solutions for conformable fractional KdVB and PKdV equations. An iterative formula can be 
immediately concluded from eq. (8):
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Theorem 3.1 The KdVB and PKdV equations with time conformable fractional deriv-
atives have unique continuous solutions under the condition that we can find t^ satisfying:
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exist and are smooth functions for both of conformable fractional KdVB and PKdV equations. 
Now, we want to show that, obtained u1(x, t) and u2(x, t) are the solutions of conformable frac-
tional KdVB and PKdV equations, respectively:

,( , ) = ( , ) ( , ), = 1,2m
n m n mx t u x t u x t m− (24)

where um(x, t) are obtained from eq. (23). It follows from eqs. (15) and (24):
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Repeating this process recursively, yields: 
1
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m m
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Then applying the infinity limit on both sides of eq. (27) and from eq. (20):

( , ) = 0, = 1,2lim m
n

n
x t m

→∞
  (28)

This completes the proof.

Uniqueness of a special solution

We can now proceed analogously, to show that the solutions of conformable fractional 
KdVB and PKdV equations are unique. To do this, we suppose that um, vm, m = 1, 2, are two 
different solutions for eqs. (3) and (4). Under the condition of Theorem 3.1:
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Therefore:

1 0, = 1,2m
m m

t
u v m

α

α
 

− − ≥ 
 


 

From Theorem 3.1, we have (ℋmt α/α) – 1 < 0, so ||um – vm|| = 0, or equivalently um = vm,  
m = 1, 2.

Invariant subspace method

In this section we introduce some preliminaries of the invariant subspace method and 
then we develop it to the conformable time fractional differential equations. 

Invariant subspace method for conformable  
time fractional differential equations

We consider an equation of the form: 
( )( , ) = [ ], (0,1]u x t uΞ ∈ (30)

where x is independent variable and Ξ[u] is differential operator w.r.t. the dependent variable u. 
Definition 4.1 The linear space Wn = span{ω1(x), ω2(x),..., ωn(x)} is called the invari-

ant subspace w.r.t. (30), whenever Ξ[Wn] ⊆ Wn. 
Theorem 4.1 Suppose that eq. (30) admits the invariant subspace Wn = span{ω1(x), 

ω2(x),..., ωn(x)}. Then, there exist ψ1, ψ2,..., ψn in such a way:

1 2
=1 =1

[ ( )] = ( , , , ) ( ), , = 1, ,
n n

i i i n i i
i i

x x i nλω ψ λ λ λ ω λΞ ∈∑ ∑   (31)

Moreover when the coefficients λi(t) satisfy:

1 2( )( ) = [ ( ), ( ), , ( )], = 1, ,t i i nt t t t i nα λ ψ λ λ λ  (32)

then

=1
( , ) = ( ) ( )
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i i
i

u x t t xλ ω∑ (33)

is the exact solution of eq. (30). 
Proof: Eqs. (30) and (33) yields:
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n

t t i i
i

u x t t xα α λ ω∑  (34)

Making use of eq. (31) concludes:
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i i
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Comparison of eqs. (35) and (34) with eq. (30):

1 2
=1

[ ( )( ) ( ( ), ( ), , ( ))] ( ) = 0
n

t i i n i
i

t t t t xα λ ψ λ λ λ ω−∑  (36)

Finally, linear independence of {ω1(x), ω2(x),..., ωn(x)}results system eq. (32).
Following theorem gives a manner to find a invariant subspace Wn [16, 48]. 
Theorem 4.2 Let functions ω1(x),..., ωn(x) form a set of solutions:

( ) ( 1)
1 1[ ] ( ) ( ) ( ) = 0n n

n ny y a x y a x y a x y−
− ′≡ + + + +L (37)
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Then Wn = span{ω1(x), ω2(x),..., ωn(x)} is invariant w.r.t. E if and only if:

[ ]=0( [ ]) | = 0uuΞ LL (38)

 Applications

First we consider time conformable fractional KdVB equation:
2 3

2 3( )( , ) = 2t
u u uu x t u

xx xα ν µ∂ ∂ ∂
− −

∂∂ ∂
 (39)

Here we have:
2 3

2 3[ ] = 2u u uu u
xx x

ν µ∂ ∂ ∂
Ξ − −

∂∂ ∂
(40)

Regarding to the Definition 4.1, we obtain W2 = span{1, x}, which produces a solution 
of eq. (39):

0 1( , ) = ( ) ( )u x t t t xλ λ+ (41)
where λ0(t) and λ1(t) are unknown coefficients to be determined. Substituting eq. (41) into eq. 
(39) concludes:

0 0 1
2

1 1

( )( ) = 2 ( ) ( )
( )( ) = 2 ( )

t

t

t t t
t t

α

α

λ λ λ
λ λ

−
 −


 (42)

We conclude from the second equation of eq. (42):

1( ) =
2

t t ααλ − (43)

Therefore, from the first equation of eq. (42) we get:

0 ( ) =t t αλ − (44)

Hence, regarding to eq. (41), we find the final exact solution:

 
( , ) = 1

2
u x t t xα α−  + 

 

Now let us consider, time conformable fractional PKdV equation: 
2 3

3( )( , ) =
2t

u uu x t
x xα

µ ∂ ∂  + ∂ ∂ 
 (45)

Let us assumed:
2 3

3[ ] =
2

u uu
x x

µ ∂ ∂ Ξ + ∂ ∂ 
(46)

According to the Definition 4.1, W3 = span{1, x, x2}and therefore:

2
0 1 2( , ) = ( ) ( ) ( )u x t t t x t xλ λ λ+ + (47)

where λ0(t), λ1(t), and λ2(t) have to be determined. Substituting eq. (47) into eq. (45) yields: 
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2
0 1

1 1 2
2

2 2
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( )( ) = 2 ( )
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t t

t t t
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(48)

We conclude from the third equation of eq. (48):

2 ( ) =
2

t t ααλ
µ

−− (49)

On substituting λ2(t) into the second equation of eq. (48) we get:

1( ) =t t αλ − (50)

In the same fashion:

0 ( ) =
2

t t αµλ
α

−− (51)

Therefore, according to eq. (47), we find an exact solution of time conformable frac-
tional PKdV equation:

 
2( , ) =

2 2
u x t t t x t xα α αµ α

α µ
− − −− + −

Conclusion

We discussed about the uniqueness and existence results of solutions for conformable 
fractional KdVB and PKdV equations. To the best of our knowledge, this paper is firstly investigates 
the uniqueness and existence results for conformable fractional differential equations. The invariant 
subspace method is extended for these equations in order to find the exact solutions, as well. 
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