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In this study, we give the practice of entropy in wind energy. Firstly, we fit marginal 
distributions to each of the variables and later demonstrate the notion of entropy 
to perform a comparison the wind energy data of the stations (Bursa, Elazig, Is-
tanbul, Mugla, Rize, Tokat, Van, and Zonguldak) that have been examined in a pe-
riod 2015-2018. The results of probability distribution fitting to these wind energy 
variables show that the wind energy time series of Bursa, Elazıg, Istanbul, Mugla, 
Rize, Tokat, Van, and Zonguldak are best resubmitted by Gamma Burr and Lognor-
mal distributions. Later, we calculate Shannon entropy for several various values, 
Tsallis entropy, Renyi entropy, and the approximate entropy. We form calculation 
outcomes with these entropies for daily data.
Key words: Shannon entropy, Tsallis entropy, approximate entropy,  

wind energy, Renyi entropy

Introduction 

The past of the word entropy can be traced back to 1865 when the German physicist 
Rudolf Clausius tested to give a novel name to irreversible heat loss, what he beforehand called 
equivalent value. The word entropy was selected because in Greek, entropies average ingredi-
ent transformative or transformation ingredient, Laidler [1]. Tsallis [2] suggested a widening 
for the entropy, which characterizes the statistical properties of complicated structure. Rao et al. 
[3] determined the cumulative residual entropy, generalized measure of indefiniteness which 
applied in credibility and image placement and non-additive measures of entropy. Shaffe [4] 
suggested a new method of describing entropy of a system, which gives a common condition 
that is non-extensive like Tsallis entropy, but is linearly dependent on component entropies, as 
Renyi entropy, which is wide, checked it numerically with the Tsallis and Shannon entropies 
and demonstrated restriction on the energy spectra imposed by the features of the Lambert 
function, which are absent in the Shannon condition. Akpinar and Akpinar [5] submitted an 
analysis of the wind features of four stations (Elazig-Maden, Elazig-Keban, Elazig, Ela-
zig-Agin) that have been investigated period of 1998-2005, used the probabilistic distributions 
of wind speed which are a very important part of information requirement in the evaluation of 
wind energy potential, which have been traditionally defined by various empirical correlations 
and regarded a theoretical approach to the analytical description of wind speed distributions 
through application of the maximum entropy principle (MEP). Pincus [6] indicated the use of 
approximate entropy (ApEn), a model-independent measure of sequential irregularity, towards 
this aim, via a few different applications, both empirical data and model based, drafted cross 
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ApEn, concerned two variable measure of asynchrony that ensured a more robust and ubiqui-
tous measure of bivariate assimilation than does correlation, and the resultant containment to 
diversification strategies, and demonstrated analytic expressions for and statistical properties of 
ApEn and compare ApEn to non-linear measures, correlation and spectral analyses, and differ-
ent entropy measures. Ubriaco [7] indicated that new entropy has the same features than the 
Shannon entropy outside additive and given that this entropy function satisfies the Lesche and 
thermodynamic steadiness criteria. Akpinar and Akpinar [8] considered an analysis of wind 
features of four stations (Elazig, Elazig-Maden, Elazig-Keban, and Elazig-Agin) period of 
1998-2005, investigated the probabilistic distributions of wind speed which are a critical part of 
information required in the evaluation of wind energy potential, described by diversified empir-
ical correlations, used Weibull distribution and the maximum entropy principle and calculated 
the parameters of the distributions which were estimated using the least squares method and 
STATISTICA software. Rompolis [9] proposed a new method of applying the basis of maxi-
mum entropy to revoke the risk neutral density of future stock, or any other asset, returns from 
European call and create prices. Moreno and Garcia-Alvarez [10] investigated the effect of re-
newable energies and different environmental and economic variables on electricity prices in 
Spain, used knowledge actual concerning renewable energies which is limited so when tried to 
estimate the electricity price model through regression methods a dimensionality problem 
emerged and used the maximum entropy econometric approach which considered estimating 
models, when information limited. Hodge et al. [11] investigated the parameters associated 
with the computation of the Renyi entropy in order to further the comprehension of its practice 
to assessing wind energy estimating errors. Wang et al. [12] defined the market performance in 
foreign exchange (FX) markets by using the multi-scale approximate entropy (MApEn) to as-
sess the randomness in FX market, allocated 17 daily FX rates in the periods 1984-2011, South-
east Asia currency crisis and American sub-prime crisis and submitted that the developed FX 
markets was more efficient than emerging FX markets, and that the financial crisis promotes the 
market efficiency in FX markets significantly, especially in emerging markets, like China, Hong 
Kong, Korea, and African market. Moreno and Garcia-Alvarez [13] submitted the impact of the 
liberalization process in the Spanish electricity market and the impact of RESE on domestic 
electricity prices and used a maximum entropy econometric approximation is used that allows 
for the estimation, told that energy dependence also had an important effect on electricity pric-
es. Lucia [14] proposed to use the exergy and entropy approach to improve the renewable ener-
gy systems and to use a link between entropy generation maximum principle and the exergy 
analysis of engineering and natural networks. Ormos and Zibriczky [15] demonstrated the ex-
plication of entropy is the measure of indefiniteness concerning the system that maintains after 
observing its macroscopic properties (pressure, temperature or volume) in statistical mechan-
ics. Van Erven and Harremos [16] considered the best significant features of Renyi divergence 
and Kullback-Leibler divergence, including convexity, continuity, limits of σ-algebras, and the 
relation of the special order 0 to the Gaussian dichotomy and contiguity and indicated how to 
generalize the Pythagorean inequality to orders various from 1. Azad et al. [17] investigated the 
wind speed data had been statistically examined usage Weibull distribution find out wind ener-
gy conversion characteristics of Hatiya Island in Bangladesh, demonstrated two important pa-
rameters like Weibull shape factor and Weibull scale factor had been computed by four meth-
ods, find the probability density function, f(x), cumulative distribution function or Weibull 
function, F(x), had been used to describe the best wind distribution between observed and the-
oretically computed data. Niu and Jang [18] used to study the complication of financial time 
series since the financial market was a complex evolved dynamic method and considered multi 
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measure entropy in the complication of a time series and applied to the financial market. Dedu 
and Toma [19] obtained some integrated methods for modelling financial data and demonstrat-
ed solving determination making problems, based on risk theory and information theory, inves-
tigated several risk measures and entropy measures and crosschecked with respect to their ana-
lytical features and effectiveness in analysing real problems. Sati and Gupta [20] described a 
generalized cumulative remaining entropy based on the non-additive Tsallis entropy. Sheraz 
[21] used entropy approach for volatility markets. Stosic et al. [22] considered the effects of 
financial attacks on alien exchange (FX) markets, where entropy evolution was measured for 
varied exchange rates, using the time dependent complex entropy method. Ram et al., [23] 
submitted the applicability of permutation entropy based complication measure of a time series 
for finding of error in wind turbines, examined a set of electrical data from one faulty and one 
solid wind turbine using traditional Fast Fourier analysis in addition permutation entropy anal-
ysis to compare the complication index of stage flows of the two turbines over time. Shoaib  
et al., [24] submitted focuses on detecting the fitness and accuracy of the fitted distribution 
function the measured wind speed data for Baburband site in Sindh Pakistan and made to com-
parison between the wind energy densities obtained using the fitted functions based on Maxi-
mum entropy principle and Weibull distribution. Ponta and Carbone [25] performed like this 
entropy measure on the time series of prices and volatilities of six financial markets on data 
sampled over period 1999-2004 and indicated that the entropy of the volatility series depends 
on the individualistic market. Khammar and Jahanshahi [26] provided the weighted form of this 
measure with the weighted cumulative residual Tsallis entropy, reproduced ageing classes and 
shown that it can uniquely detect the survival function and Rayleigh distribution. In this study, 
the method of analytical determination of wind energy distributions, and based on entropy ap-
proach was used for regions (Bursa, Elazıg, Istanbul, Mugla, Rize, Tokat, Van and Zonguldak) 
over a period of 3 years.

Material and method

The Shannon entropy

The Shannon entropy of probability measure p on finite set X is given:

1
( ) ln

n

n i i
i

S P p p
=

= −∑ (1)

where pi ≥ 0, i = 1, 2..., n, ∑n
i=1, pi = 1, and 0ln0 = 0. Given a continuous probability distribution 

with a density function f(x), we can define the Shannon entropy:

( ) ln ( )dH f x f x x
+∞

−∞

= ∫ (2)

where  ∫+∞
–∞ f(x)dx = 1 and  f(x) ≥ 0. The Shannon entropy in information theory applications, the 

answer is given by the asymptotic equipartition property. There is T ⊆ S n with:
[ ( ) ]| | en HT ρ ε+≤ (3)

such that sampling n times from p yields an element of T with probability ≻1 – ε, and ε → 0 as 
n → ∞.

The Tsallis entropy

For any positive real number α, the Tsallis entropy of order α of probability measure 
p on finite set X is defined as: 
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The characterization of the Tsallis entropy is the same as that of the Shannon entropy 
except that for the Tsallis entropy, the degree of homogeneity under convex linearity condition 
is α instead of 1.

Renyi entropy 

For β ∈ [0, ∞], the Renyi entropy of order β is given:
1( ) log

1 i
i S

H β
β ρ ρ

β ∈

 =  −  
∑ (5)

–– The scaling factor is conventional: 
It makes Hβ non-negative for all β and ensures Hβ (un) = logn, where un is the uniform 

distribution on an n element set.
The main property which the Renyi entropies have in common with Shannon entropy 

is additivity:
( ) ( ) ( )H r H H rβ β βρ ρ× = + (6)

–– Interesting special cases:
For β = 0, we obtain the max entropy, which is cardinality of the support of ρ:

{ }0 ( ) log | | ( ) 0 |H i S iρ ρ= ∈  (7)

For β = 1, we recover Shannon entropy:
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For β = ∞, we obtain the min entropy:
1( ) log max ( ) log min
( )ii

H i
i

ρ ρ
ρ∞ = − = (9)

Results

Descriptive statistics

We use the daily wind energy data of Bur-
sa, Elazıg, Istanbul, Mugla, Rize, Tokat, Van, 
and Zonguldak stations which receive from 
general directory of meteorology of Elazıg for 
the period 2015-2018. Table 1 summarizes sta-
tistics of Bursa, Elazıg, Istanbul, Mugla, Rize, 
Tokat, Van, and Zonguldak data. Table 1 shows 
different mean values for data set, and also the 
corresponding standard deviations are different. 
Skewness of data set is positive, that is, this data 
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Figure 1. Box plot of change of Adana, Bitlis, 
Bursa, Elazıg, Igdır, Istanbul, MuGla, Rize, 
Sırnak, Tokat, Van, and Zonguldak wind 
energy data series 
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is skewed right. The high kurtosis of data set reveals that extreme value changes often occur 
when the tail of return distributions show fatness. The Jarque-Bera (JB) test denotes that the 
normality of each return series distribution is strongly rejected at 0.05 level, which means all 
price index distributions are non-normal. Graphical representations of the data employed are 
shown in figs. 1 and 2.

Table 1. Summary statistics
Bursa Elazıg Istanbul Mugla Rize Tokat Van Zonguldak

Mean 2,353 2,256 1,633 1,507 0,885 2,341 1,498 2,044
Median 2,100 2,000 1,600 1,500 0,800 2,200 1,400 1,900

Maksimum 13,10 9,800 3,900 3,900 2,800 9,700 5,600 6,500
Minumum 0,500 0,400 0,600 0,500 0,300 0,400 0,200 0,300
Std. Dev 1,153 0,989 0,469 0,511 0,329 0,8858 0,684 0,757
Skewness 2,066 2,046 1,101 0,681 1,568 1,5075 1,798 1,358
Kurtosis 12,47 10,38 4,870 3,826 7,559 9,005 9,084 6,339

Jarqure Bera 4990,8 3331,683 357,12 118,72 1430,5 2109,1 2333 865,7
Probability 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000
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Figure 2. Quantile plot of change for wind energy data series of Adana, 
Bursa, Elazıg, Istanbul, Mugla, Rize, Tokat, Van, and Zonguldak 
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Fitting marginal distributions to wind energy

Now, marginal distributions are fitted to each of the variables. For wind energy of Bursa, 
Elazıg, Istanbul, Mugla, Rize, Tokat, Van, and Zonguldak, we use the most popular distributions, 
namely Burr, Gamma, Log logistic, Lognormal and Weibull distribution. The performance esti-
mation for the distribution fitting of wind energy at all the stations is carried out using cumulative 
distribution function plots and statistical ındicators as shown in fig. 3, tabs. 2-4. Here, we attain 
the estimates using the method of maximum likelihood. In addition, we make simulation study 
from parameter specified in tab. 2 of the selected distribution for the wind energy and as a result of 
this study, we determine the most suitable distributions for this data set, depending on the RMSE 
values. From tab. 2, wind energy of Bursa, Tokat, Van and Zonguldak time series are best Gamma 
distribution; wind energy of Elazıg, Istanbul, and Rize time series are best Lognormal distribution 
and wind energy of Mugla time series are best Burr distribution.

Table 2. Parameters of the probability distributions fitted to wind energy 
Burr Gamma Log logistic Lognormal Weibull

 α c k a b µ  σ µ  σ a b
Bursa 1.899 4.459 0.755 5.147 0.456 0.744 0.350 0.754 0.440 2.661 2.142
Elazıg 1.797 5.652 0.635 6.522 0.346 0.0001241 2.052 0.735 0.387 2.546 2.344

Istanbul 1.559 6.3960 0.977 12.96 0.125 0.449 0.157 0.451 0.278 1.806 3.507
Mugla 1.893 4.079 2.303 8.762 0.171 0.363 0.200 0.351 0.346 1.683 3.110
Rize 0.792 5.451 0.859 8.283 0.106 –0.188 0.194 –0,184 0.347 0.991 2.716
Tokat 2.242 4.796 1.074 7.764 0.301 0.785 0.204 0.784 0.363 2.625 2.684
Van 1.557 3.790 1.382 5.352 0.279 0.324 0.239 0.307 0.451 1.690 2.264

Zonguldak 1.810 5.444 0.832 8.031 0.254 0.646 0.197 0.651 0.359 2.292 2.755

Table 3. For real data performance evaluation of different  
probability distributions fitted to wind energy 

Burr Gamma Log logistic Lognormal Weibull
Bursa, logl –1524.01 –1556.01 –1536.7 –1519.36 –1652.4
Elazıg, logl –1332.83 –1392.44 –1341.69 –1352.12 –1513.76

Istanbul, logl –667.977 –675,121 –667.995 –664.034 –772.054
Mugla, logl –800.852 –790,616 –816.345 –796.147 –833.045
Rize, logl –193.429 –221.939 –194.338 –199.785 –330.726
Tokat, logl –1335.3 –1346.93 –1335.47 –1337.27 –1437.92
Van, logl –996.111 –1030.94 –1001 –1043.49 –1101.81

Zonguldak, logl –1150.54 –1177.54 –1151.73 –1174.36 –1265.89

Table 4. For simulated data performance evaluation of different  
probability distributions fitted to wind energy

Burr Gamma Log logistic Lognormal Weibull
Bursa RMSE 1.3932 1.0352 1,2330 1.0820 1.1750
Elazig RMSE 1.1194 0.8936 1.8410 0.8917 1.0153

Istanbul RMSE 0.5254 0.4444 0.4721 0.4306 0.5021
Mugla RMSE 0.4844 0.5187 0.5362 0.5434 0.5184
Rize RMSE 0.3448 0.3191 0.3370 0.3050 0.3592
Tokat RMSE 0.9182 0.8548 0.9507 0.8864 0.9290
Van RMSE 0.6660 0.6169 0.7396 0.6878 0.6920

Zonguldak RMSE 0.7980 0.7111 0.7546 0.7367 0.8210
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Figure 3. Cumulative distribution function of Burr, Gamma, Log logistic, Lognormal, and  
Weibull distributions fitted to wind energy 
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Entropy approach

We use the entropy method for volatility of the wind energy of Bursa, Elazıg, Istanbul, 
Mugla, Rize, Tokat, Van, and Zonguldak. For this, we calculate to the entropies of Shannon-, Tsal-
lis, Rényi and approximate. In tabs. 5-12, firstly, we have obtained several various estimators for 
the Shannon entropy. Later, we attain the Tsallis entropy for various several values of parameter 
and Renyi entropy measures for several various values of parameter. Eventually, we have calcu-
lated approximate entropy. When the whole probable incidents are same probability, the entropy 
takes maximum value. In our empirical results, volatility does not show differentness; this model 
indicates linear and non-linear dynamics. From the results, we obtain that entropies are positive so, 
characters of our data series are non-linear. In the daily data series, we obtain that Tokat, Zongul-
dak, Rize, Mugla, Elazıg, Bursa, Istanbul, and Van series has great value of approximate entropy, 
respectively. It concludes in this case that Tokat data series are higher volatility than other data 
series. For the Shannon entropy estimators, it is clear that Tokat series have larger value. Similarly 
for the Tsallis and Renyi, if α and β close to 1, we get the value of Shannon entropy. Volatility for 
Tokat, Zonguldak, Rize, Mugla, Elazıg, Bursa, Istanbul, and Van series is conditioned by α and β.

Table 5. Different measures of wind energy of Bursa
 Shannon  Tsallis  Renyi Approximate entropy

Method α  β
ML 6.954647 0 1120.0000000  0 7.021976  
MM 7.24824 0.2 338.8670010  0.25 7.004193  1.50267

Jefferys 6.982708 0.4 109.0709907  0.5 6.987160
Laplace 6.996261 0.6 38.2924034  1 6.954647

SG 6.954724 0.8 15.1444296  2 6.893237
Minimax 6.957835 1 6.9546466  4 6.777054

CS 8.546349 1.2 3.7526438  8 6.568408
Shrink 7.022868 1.4 2.3436360  16 6.311575

1.6 1.6404040  32 6.133102
1.8 1.2450137  64 6.038328
2 0.9989854 ∞ 5.944058

Table 6. Different measures of wind energy of Elazıg
 Shannon  Tsallis  Renyi Approximate entropy

Method α  β
ML 6.956969 0 1121.0000000  0 7.022868  
MM 7.170355 0.2 339.4219177  0.25 7.006435 1.510556

Jefferys 6.978 0.4 109.2491176  0.5 6.989999
Laplace 6.990273 0.6 38.3397891  1 6.956969

SG 6.957019 0.8 15.1555918  2 6.889192
Minimax 6.959463 1 6.9569690  4 6.735413

CS 7.805384 1.2 3.7530396  8 6.350171
Shrink 7.022868 1.4 2.3436722  16 5.972166

1.6 1.6403931  32 5.782001
1.8 1.2450048  64 5.690268
2 0.9989813 ∞ 5.601358
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Table 7. Different measures of wind energy of Istanbul
 Shannon  Tsallis  Renyi Approximate entropy

Method α  β
ML 6.919184 0 1121.0000000  0 7.022868  
MM 7.131607 0,2 337.5101501  0,25 6.997599 1.349244

Jefferys 6.951732 0,4 108.2989577  0,5 6.971909
Laplace 6.970873 0,6 37.9835230  1  6.919184

SG 6.919261 0,8 15.0361331  2 6.807588
Minimax 6.923039 1 6.9191840  4 6.549772

CS 7.813447 1,2 3.7414930  8 6.037212
Shrink 7.022868 1,4 2.3402191  16 5.658377

1,6 1.6393746  32 5.476530
1,8 1.2447070  64 5.389604
2 0.9988946 ∞ 5.305392

Table 8. Different measures of wind energy of Mugla
 Shannon  Tsallis  Renyi Approximate entropy

Method α  β
ML 6.959424 0 1121.0000000  0 7.022868  
MM 7.203789 0.2 339.5497412  0,25 7.007026  1.525615

Jefferys 6.981774 0.4 109.3133127  0,5 6.991214
Laplace 6.994002 0.6 38.3637567  1 6.959424

SG 6.959479 0.8 15.1635140  2 6.894239
Minimax 6.961992 1 6.9594236  4 6.757099

CS 8.113825 1.2 3.7537722  8 6.498266
Shrink 7.022868 1.4 2.3438862  16 6.219607

1.6 1.6404549  32 6.048530
1.8 1.2450226  64 5.958478
2 0.9989864 ∞ 5.866119

Table 9. Different measures of wind energy of Rize
 Shannon  Tsallis  Renyi Approximate entropy

Method α β
ML 6.966558 0 1121.0000000  0 7.022868  
MM 7.298058 0.2 339.8550865  0.25 7.008441  1.543045

Jefferys 6.991268 0.4 109.4701356  0.5 6.994242
Laplace 7.00261 0.6 38.4250388  1 6.966558

SG 6.966626 0.8 15.1850272  2 6.914045
Minimax 6.96924 1 6.9665583  4 6.818394

CS 8.971675 1.2 3.7560562  8 6.648995
Shrink 7.022868 1.4 2.3445998  16 6.421101

1.6 1.6406739  32 6.257288
1.8 1.2450889  64 6.167304
2 0.9990063 ∞ 6.071981
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Table 10. Different entropy measures of wind energy of Tokat
 Shannon Tsallis Renyi Approximate entropy

Method α  β
ML 6.98351 0 1121.000000  0 7.022868  
MM 7.289477 0,2 340.876730  0,25 7.013088

Jefferys 6.999707 0,4 109.958582  0.5 7.003271  1.582739
Laplace 7.007598 0,6 38.600650  1 6.983510

SG 6.983553 0.8 15.241301  2 6.943399
Minimax 6.985279 1 6.983510  4 6.860746

CS 8.669994 1.2 3.760972  8 6.697245
Shrink 7.022868 1.4 2.345990  16 6.479793

1.6 1.641060  32 6.326607
1.8 1.245195  64 6.244278
2 0.999035 ∞ 6.152132

Table 11. Different measures of wind energy of Van
 Shannon Tsallis Renyi Approximate entropy

Method α  β
ML 6.913045 0 1120.0000000  0 7.021976  
MM 7.086855 0.2 336.7635467  0.25 6.994455  1.323248

Jefferys 6.943257 0.4 108.0262519  0.5 6.967231
Laplace 6.962255 0.6 37.9005605  1  6.913045

SG 6.913116 0.8 15.0129616  2 6.804623
Minimax 6.916888 1 6.9130449  4 6.599782

CS 7.493113 1.2 3.7399328  8 6.322431
Shrink 7.022868 1.4 2.3398390  16 6.095550

1.6 1.6392869  32 5.950578
1.8 1.2446885  64 5.865924
2 0.9988914  ∞ 5.775141

Table 12. Different measures of wind Energy of Zonguldak
 Shannon Tsallis Renyi Approximate entropy

Method α β

ML 6.980583 0 1121.0000000  0 7.022868  
MM 7.305888 0.2 340.7512071  0.25 7.012506  1.549878

Jefferys 6.998585 0.4 109.8933998  0.5 7.002017
Laplace 7.007087 0.6 38.5751537  1 6.980583

SG 6.980631 0.8 15.2323977  2 6.935311
Minimax 6.982524 1 6.9805829  4 6.830564

CS 8.8486 1.2 3.7600442  8 6.585156
Shrink 7.022868 1.4 2.3457025  16 6.309732

1.6 1.6409726  32 6.154293
1.8 1.2451685  64 6.075327
2 0.9990272  ∞ 5.993207
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Conclusion 

In this article we have considered fitting to each of marginal distributions for the wind 
energy variables and the entropy approach to explain volatility of wind energy. The wind is a 
clean, free, and readily available RES, around the world. Wind turbines are capturing the wind 
energy and converting it to electricity and so wind energy is a rising star in the world. In our 
study shows that the wind energy time series of Bursa, Tokat, Van, and Zonguldak are best rep-
resented by Gamma distribution. The wind energy time series of Elazıg, Istanbul, and Rize are 
best represented by Lognormal and the wind energy time series of Mugla is best represented by 
Burr distribution. Later, we have employed the entropy approximation evaluate the volatility of 
the wind energy. We employed the Tsallis, Shannon, Renyi, and the approximate entropy. Our 
results demonstrate that Tokat for the period 2015-2018 is more volatile than other stations in 
daily data series.
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