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The study examines problems of heat conduction in a half-space with a thermal 
conductivity coefficient that is dependent on temperature. A boundary plane is 
heated locally in a circle zone at a given temperature as a function of radius. 
A solution is obtained for any function that describes temperature in the heat-
ing zone. Two special cases are investigated in detail, namely Case 1 with given 
constant temperature in the circle zone and Case 2 with temperature given as a 
function of radius, r. The temperature of the boundary on the exterior of the heat-
ing zone is assumed as zero. The Hankel transform method is applied to obtain a 
solution for the formulated problem. The effect of thermal properties on tempera-
ture distributions in the considered body is investigated. The obtained results were 
compared with finite element method model.
Key words: temperature, heat flux, temperature-dependent conductivity,  

Kirchhoff transform, Hankel transform

Introduction

The accuracy of distribution of temperature field is extremely important in the cal-
culation of thermal stresses or residual stresses. It is well known that a few materials change 
mechanical and thermal properties under temperature change. In the aforementioned cases, the 
application of linear heat equation is not appropriate to describe the temperature field and heat 
flux vector. The theory of non-linear heat equation for materials with temperature-dependent 
properties appears as the most adequate to describe heat conduction problems and to use the ob-
tained results to determine thermal stresses. One of the first articles on the modelling of thermo-
elastic materials with temperaturedependent properties were discussed in [1, 2]. The wide list 
of references connected with the aforementioned problems could be found in the monograph 
[3]. Evidently, the determination of a precise temperature field is necessary for solid mechanics 
problems as evidenced in [5-12].

Several existing studies consider thermal and residual stresses analyses. Various ma-
terials in engineering construction change thermomechanical properties, and heat conduction 
characteristics play an extremely important role in thermal and residual stress considerations, 
see [13-15]. The aforementioned studies deal with the exact solution of axisymmetric stationary 
conduction problems by considering the effect of thermo-sensitivity of materials on stress 
distributions.
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The solution to non-linear problems of heat conduction is typically difficult. The main 
stream of techniques that are applied to the problems include perturbation methods [7, 15]. 
However, certain problems in engineering or science cannot be solved via perturbation methods. 
Subsequently, nonperturbative methods were presented in [6, 16]. The control of the conver-
gence region and rate of approximate series in the methods leads to difficulties. An analytical 
method for non-linear problems, namely the homotopy analysis method, was proposed in [17]. 
It enables the control and adjustment of the convergence region and rate of approximate series 
when necessary. 

Changes in heat conduction properties relative to temperature can be found in publica-
tions based on experimental studies. They are also widely used in FEM analyzes that take into 
account the thermosensitivity of materials, eg in the case of testing braking systems [18, 19].

Linearisation is another well-known analytical approach to solve a non-linear heat con-
duction problem. One of the methods corresponds to the Kirchhoff integral transformation [4, 20].

In this study, the axisymmetric stationary heat conduction problem for half-space 
with temperature-dependent conductivity coefficient is considered. The boundary surface is as-
sumed as locally heated by the given temperature in a circle zone with radius, a. The boundary 
surface on the exterior of the heating zone is maintained at 0 K. The solution is obtained for any 
function that describes the temperature boundary condition on the surface of the half-space and 
depends only on radius, r. Two special cases of the boundary temperature are considered in de-
tail: with given constant temperature in the circle zone, or with given temperature as a function 
of radius, r. At infinity, it is assumed that the temperature tends to 0 K. The formulated problem 
is axisymmetric and stationary, with given dependency of the thermal conductivity coefficient 
on temperature, the  considered problem is non-linear. With respect to the linearisation, the 
Kirchhoff integral transform method is applied, and a well-known Hankel transform method is 
then used for the solution of the problem.

Formulation and solution of the problem

The problem is formulated via the cylindrical co-ordinates ( , , )r zϕ  such that axis z 
is perpendicular to the boundary plane of the half-space, fig. 1. Let 0( , ) ( , )T r z r z Tθ= −  de-
note the difference of temperature, θ , at the point ( , )r z  of half-space and a reference tem-
perature, 0T , fig. 1. The thermal conductivity coefficient of the half-space depends on the te-
mperature and is given:

	 0( ) ( )k T k f T= 	 (1)

where k0 denote the thermal conductivity coefficient at the ref-
erence temperature, T0. The function f(T) describes dependence 
of thermal conductivity coefficient as a function of tempera-
ture, T.

On the boundary, surface boundary heating is assumed in 
the form of a given temperature that depends on the radius, r, 
and is given:

	 0( , 0) ( ) ( )H( )gT r z T r r a rϑ= = = − 	 (2)

where 0 ( )rϑ  denotes a given temperature as a function of ra-
dius, r, in the circle zone with radius, a, and H( )  denotes the 
Heaviside step function.
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Figure 1. Scheme of the 
considered problem
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Furthermore, it is assumed that the temperature at infinity tends to zero, and this as-
sumption leads to the following condition:

	 2 2( , ) 0, for T r z r z→ + →∞ 	 (3)
The formulated problem denotes a stationary axisymmetric heat conduction problem, 

and the heat equation is expressed:

	 1( ) ( ) 0T Tk T rk T
z z r r r
∂ ∂  ∂ ∂    + =    ∂ ∂ ∂ ∂    

	 (4)

The components of the heat flux vector are given:

	 [ ]( , ) ,0, ( ) ,0, ( )r z
T Tr z q q k T k T
r z

∂ ∂ = = − ∂ ∂ 
q 	 (5)

Equation (4) denotes a non-linear stationary heat conduction equation. Existing 
studies propose the Kirchhoff approach for the linearisation of heat equation. This is expressed 
in the form [4, 20]:

	
00

( ) d
T k

k
ϑ ϑΨ = ∫  	 (6)

where k0 = k(0) denotes a thermal conductivity coefficient when temperature is equal to refer-
ence temperature T0. Equation (4) is reduced to a linear Laplace equation:

	
2 2

2 2
1 0
r rr z

∂ Ψ ∂Ψ ∂ Ψ
+ + =

∂∂ ∂
	 (7)

Equation (7) is solved in conjunction with the relevant boundary conditions that also 
apply Kirchhoff’s transformation. The Hankel transform method is applied to solve the formu-
lated boundary value problem:

	 0
0

( , ) ( , ) J ( )df s z f r z r sr r
∞

= ∫ 	 (8)

where 0J ( )⋅  denotes the Bessel function [21].
Equation (7) in the Hankel transform space is reduced to the ODE with the constant 

coefficient given:

	
2

2
2

d ( , ) ( , ) 0
d

s z s s z
z

Ψ
− Ψ =



 	 (9)

The solution of eq. (9) that satisfies condition (3) is as follows:

	 ( , ) exp( )s z A szΨ = − 	 (10)
where A denotes a constant that is determined from the heat boundary condition.

From eqs. (2) and (6) we can write the 0( , 0) ( )r z rΨ = = Ψ :

	
( )

0
00

( )( ) d
gT r

kr
k
ϑ ϑΨ = ∫ 	 (11)
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Equation (11) in Hankel integral transform space take the form:

	 0 0 0
0

( ) ( )J ( )d , for
a

s r r sr r r aΨ = Ψ <∫ 	 (12)

Using eq. (12) in eq. (10) and applied inverse Hankel transformation the ( , )r zΨ  is 
expressed in the form:

	 0 0 0
0 0

( , ) exp( )J ( )d ( )J ( )d
a

r z s sz rs s sρ ρ ρ ρ
∞

Ψ = − Ψ∫ ∫ 	 (13)

The solution of considered problem it is given by eq. (13) and it have the character of 
the general solution for given a priori dependence of thermal conductivity coefficient as a func-
tion of temperature and given boundary temperature as a function of radius, r. The distribution 
of temperature, T, can be determined by Ψ, when the thermal conductivity is given a priori. The 
components of heat flux ,r zq q  are expressed by the potential Ψ:

	 0( )r
Tq k T k
r r

∂ ∂Ψ
= =

∂ ∂
	 (14)

	 0( )z
Tq k T k
z z

∂ ∂Ψ
= − = −

∂ ∂
	 (15)

Special cases

Let assume that the thermal conductivity coefficient is given:

	 0( ) (1 )k T k T αβ= + 	 (16)

where 0 , ,k α β  denote given constants. This form of the thermal conductivity coefficient func-
tion is based on the experimental studies [21]. It is assumed that α  has the non-negative integer 
values 0,1,2,...α = . Constant α describes the rate of these changes (linear growth at α = 1 or 
higher order, e.g for α = 2). Constant β describes the nature of the change in the heat transfer 
coefficient (increase or decrease in value as the temperature rises). For 0β >  material have 
better thermal conductivity as the temperature rises, and for β < 0 material conductivity proper-
ties deteriorate with increase in temperature. At β = 0 or α = 0 thermal conductivity coefficient 
does not depend on temperature.

The thermal potential, Ψ, is defined by eq. (6) and the form of dependence of thermal 
conductivity coefficient in eq. (16) as a function of temperature is expressed:

	
1[1 ( , )] 1( , )

(1 )
T r zr z

αβ
β α

++ −
Ψ =

+
	 (17)

The inverse dependence of the temperature T(Ψ) of thermal potential is Ψ:

	 11( , ) 1 (1 ) ( , ) 1T r z r zα β α
β

+ = + + Ψ −  	 (18)

Subsequently, we satisfy the boundary surface condition of heating (2). Thermal po-
tential (17) assuming that z = 0 is expressed:
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1

0
0

[1 ( )H( )] 1( )
(1 )

r a rr
αβϑ

β α

++ − −
Ψ =

+
	 (19)

The boundary condition (19) in the Hankel transform space is expressed:

	
1

0
0 0

0

[1 ( )] 1( ) J ( )d ,
(1 )

a rs r sr r r a
αβϑ

β α

++ −
Ψ = <

+∫ 	 (20)

The solution of the problem in the Kirchhoff transform space could be written in the 
form:

	

0 0
0

1
0

0 0
0 0

( , ) ( )exp( ) J ( )d

[1 ( )] 1 J ( )d exp( ) J ( )d
(1 )

a

r z s sz s rs s

s sz s rs s
αβϑ ξ

ξ ξ ξ
β α

∞

∞+

Ψ = Ψ − =

+ −
= −

+

∫

∫ ∫



	 (21)

The general solution of the formulated problem for the axisymmetric heat conduction 
problem for a half-space with temperature-dependent properties heated locally via a given tem-
perature distribution on the boundary surface is given:

	 { }11 0 0 0
0 0

1( , ) 1 exp( ) J ( )d [1 ( )] 1 J ( )d 1
a

T r z sz s sr s sαα βϑ ξ ξ ξ ξ
β

∞
++

 
 = + − + − −
 
 

∫ ∫ 	 (22)

Components of the heat flux vector are calculated:

	 2
0 0 0 1

0

( , )( , ) ( ) ( )exp( )J ( )dr
T r zq r z k T k k s s sz sr s

r r

∞∂ ∂Ψ
= = = Ψ −

∂ ∂ ∫ 



	 (23)

	 2
0 0 0 0

0

( , )( , ) ( ) ( )exp( )J ( )dz
T r zq r z k T k k s s sz sr s

z z

∞∂ ∂Ψ
= − = − = Ψ −

∂ ∂ ∫
 





	 (24)

The shape of the temperature boundary condition in considered cases plays an im-
portant role in contact mechanics [22, 23].In the study, two cases of the boundary condition are 
considered as follows:
	– Case 1

	 0( , 0) H( )T r z a rθ= = − 	 (25)

	– Case 2

	 1 2 2
0( , 0) H( )T r z a a r a rθ −= = − − 	 (26)

For example, the constant temperature is assumed in the framework of contact problem 
with preheated punch and Case 2 is used for contact problem with rotating punch.

We denote the dimensionless co-ordinate system ( , )r z   as related to radius a of the 
heating area. This is expressed:

	 ,r zr za a= =  	 (27)
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The temperature distribution in dimensionless co-ordinates is expressed as follows in 
both cases:

	– Case 1

	 11 1 0
0

1( , ) 1 (1 ) 1 exp( )J ( )J ( )d 1T r z sz s sr sαα β
β

∞
++

 
  = + + − − −  
 

∫


     

 	 (28)

	– Case 2

	
1 2

1 1 0100 2

11 2( , ) 1 1 J ( ) J ( ) exp( )J ( )d 1
2

k

k
k

k

kT r z s s sz sr s
k s

α

α
α

β
β

∞ +

+
+=

  +       = + Γ + − − −              

∑∫


      





	 (29)

where dimensionless temperature is related to the maximum value of temperature in the consid-
ered boundary condition 0/T T θ=



. Specifically, ( )Γ ⋅  denotes a gamma function [14].
Components of the heat flux vector are calculated as follows:

	– Case 1

	
1

2
1 1

0 0 0

( , ) [(1 ) 1] exp( )J ( ) J ( )d
(1 )

rq r z a s sz s sr s
k

αβ
θ β α

∞++ −
= − −

+ ∫


 

    

 	 (30)

	
1

2
1 0

0 0 0

( , ) [(1 ) 1] exp( )J ( ) J ( )d
(1 )

zq r z a s sz s sr s
k

αβ
θ β α

∞++ −
= −

+ ∫


 

    

 	 (31)

	– Case 2

	

1 2
110 0 00 2

2
1

1( , ) 1 2 1 J ( ) J ( )
2(1 )

exp( )J ( )d

k

kr
k

k

q r z a k s s
kk s

s sz sr s

α α
β

θ β α

∞ +

+=

 +      = − Γ + − ⋅      +       

⋅ −

∑∫
 



 





    	 (32)

	

1 2
110 0 00 2

2
0

1( , ) 1 2 1 J ( ) J ( )
2(1 )

exp( )J ( )d

k

kz
k

k

q r z a k s s
kk s

s sz sr s

α α
β

θ β α

∞ +

+=

 +      = Γ + − ⋅      +       

⋅ −

∑∫
 



 





   

	 (33)

It is easy to show the transition to a medium that is not thermo-sensitive (for α = 0) 
and the results reduce to a classic solutions for non-thermo-sensitive materials.

Numerical analysis and discussion of results

The analysis of the original relations in Case 1 and Case 2 indicates that the solution 
in the problem involving the modelling the thermo-sensitive half-space depends on two param-
eters, namely β and α. In addition the obtained results were compared with results from simple 
finite element method (FEM) model, created using COMSOL Multiphysics. Results from FEM 
analyses were presented in the form of temperature distributions (grey and black triangles in 
figs. 2(b) and 5(b).
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Case 1

Figure 2 shows the dimensionless distribution of temperature as a function of coeffi-
cient β for two cases of assumed temperature, namely 0 300K;600Kθ =  and 0,1,2α = . With 
respect to α = 0, see fig. 2(a), we obtained results for the half-space in which properties are 
constant under effect of temperature, and it partially verifies the obtained solution. The solu-
tions for α = 1,2 were shown using grey lines. As shown in fig. 2, when the parameter β corre-
sponds to a positive value, the thermal conductivity coefficient increases under effect of tem-
perature. An analogical conclusion is formulated for negative value of parameter β wherein the 
thermal conductivity coefficient decreases with increases in the temperature. Figure 2(a) shows 
the distribution of temperature as a function of depth, and it is observed that the temperature 
tends to zero with depth increase. Figure 2(b) shows a high consistency of the results from the 
FEM analysis (marked as grey and black triangles) with obtained analytical solutions.
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Figure 2. Dimensionless temperature, 


T , as a function of depth z : (a) = 1α  and (b) = 2α

As shown in results presented in fig. 2, it is observed that the difference between the 
solution for body with constant thermal conductivity coefficient (α = 0) and thermo-sensitive 
materials consider higher values for α = 2 when compared to the solution for α = 1 i. e. linear 
dependence of thermal conductivity coefficient. On the basis of the results presented in fig. 2, it 
can be stated that the influence of changes in the thermal conductivity properties is significant. 
This can be confirmed by experimental studies [18, 19]. These changes reach up to several 
dozen percent. Differences in temperature values between the thermo-sensitive material and the 
material with constant thermal conductivity coefficient (α = 0) decrease with depth. Figures 3 
and 4 show the distributions of heat flux component qz and qr, respectively. The distributions of 
qz and qr are shown at two depths for 0.05;0.25.z =  Figure 3 shows the effect of parameter α  
on the distribution of the qz component of the heat flux vector. Thus, larger differences are ob-
served in the case when α = 2, and it decreases with depth when compared to the solution for 
the constant thermal conductivity coefficient for α = 0.
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Analogical conclusion of the effect of parameter α on the distribution of the radial 
component of heat flux vector is shown in fig. 4. It indicates that the larger differences are 
observed in the case when the α = 2 (as denoted by grey lines), and it decreases with the depth 
when compared to the solution for the constant thermal conductivity coefficient for α = 0 (as 
denoted by black line).

Case 2

In this case, we consider the heat boundary condition with distribution of temperature 
as a function of radius as given by eq. (26). The analysis of the obtained results is performed in 
an analogical manner as in Case 1. Initially, we begin to analyse temperature as a function of 
parameter α, and three cases are considered, namely 0;1;2α = . Figure 5 shows the distribution 

Legend:
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− −

− = − = = − = =

− = − = − = − =
Figure 3. Dimensionless heat flux vector component, qz, as a function of radius r ;  
(a) and (b) = 1α , (c) and (d) = 2α
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of temperature at the centre of heating zone for 0r =  as a function of depth z . Comparing figs. 
5(a) with 5(b) the differences in the values of the component of the heat flux vector between the 
materials are higher for the materials with a higher α and decrease with the distance from the 
heating zone. Figure 5(b) also shows a high consistency of the results from the FEM analysis 
(marked as grey and black triangles) with obtained analytical solutions.

In results shown in fig. 5, we observe analogical behaviour similar to that in Case 1, 
see fig. (2) wherein the difference between the solution for body with constant thermal conduc-
tivity coefficient and thermo-sensitive materials considers higher values for α = 2 when com-
pared to the solution for α = 1 (i. e. linear dependence of the thermal conductivity coefficient). 
Figures 6 and 7 show the distributions of heat flux components qz and qr, respectively. 
Distributions of qz and qr are depicted on two depths for 0.05;0.25.z =
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Figure 4. Dimensionless heat flux vector component, qr, as a function of radius r
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Figure 5. Dimensionless temperature, 


T , as a function of depth z : (a) = 1α   
and (b) = 2α
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Initially, we analyse the effect of parameter α on the distribution of the qz component 
of heat flux vector. Thus, we observe larger differences in the case when α = 2, and it decreases 
with depth when compared to the solution for a constant thermal conductivity coefficient for  
α = 0. Furthermore, the second parameter that affects the distribution of heat flux corresponds to 
parameter β. The effect of parameter β on component qz of the heat flux vector is shown in fig. 6. 
The highest difference for the values of qz is visible in the centre of the heating zone where the 
maximum temperature value changes from 300 K to 600 K. We assume that parameter β con-
siders positive value, and thus the temperature increases when compared with that of the body 
with a constant thermal conductivity coefficient. 

The effect of parameter α on the distribution of radial component of heat flux vector 
is shown in fig. 7 and indicates that larger differences are observed in the case when α = 2 (as 
denoted by grey lines). It decreases with depth when compared to the solution for constant 
thermal conductivity coefficient for α = 0 (as denoted by the black line). 

Knowledge of the effect of temperature on the distribution of the change in the thermal 
conductivity coefficient 0( )/k T k



 is interesting and useful. This is shown in fig. 8.
Figure 8 shows the effect of temperature on the thermal conductivity coefficient. The 

heat affected zone of temperature to the thermal conductivity coefficient increases with in-
creases in parameter β. This knowledge is very important in the analysis of thermal stresses.

Conclusions

In the study, the problem of heat conduction in the half-space with the thermal con-
ductivity coefficient based on temperature was investigated. Two cases of boundary heating 
were considered, namely Case 1 (with given constant temperature in the circle zone) and Case 2 
(with given temperature as a function of radius, r). The temperature of the boundary on the ex-
terior of the heating zone was assumed as zero. A solution in analytical form of Hankel integrals 
was obtained. A numerical analysis was used to investigate the effect of thermal conductivity 
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coefficient of materials with temperature-dependent properties on the temperature and heat flux 
distribution. In both cases of the temperature boundary heating condition with increases in the 
parameter β, the effect of locally heating exceeded that of the analogical problem in the case of 
body with constant thermal conductivity coefficient (β = 0 or α = 0). The same analogical con-
clusion was formulated about the parameter α wherein increases in α increase the temperature 
and heat flux for a positive value of parameter β. The obtained solution is in general form and 
it can be used with any form of thermal conductivity coefficient k(T) and temperature T at the 
boundary. Presented approach concerns the problem of heat conduction in the half-space with 
the thermal conductivity coefficient based on temperature and has an exact solution character. 
Through the linearization of the equation, the problem has been reduced to a linear problem 
whose solutions can be used to validate other methods e. g. FEM models. It is expected that the 
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Figure 6. Dimensionless heat flux vector component, qz, as a function of radius r ;  
(a) and (b) = 1α ; (c) and (d) = 2α
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results of the study can be used to design element construction with thermo-sensitive materials 
and further in the analysis of thermal stresses for local axisymmetric heating. Furthermore, the 
solution is used to determine the zone in which the temperature affects the thermal conductivity 
coefficient. Solution is in general form and it is shown in the examples.
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Figure 7. Dimensionless heat flux vector component, qr, as a function of radius r ;  
(a) and (b) = 1α , (c) and (d) = 2α
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Nomenclature
a	 –	 radius of heating zone, [m]
H (•)	 –	 Hankel function
Jn(•)	 –	 Bessel function of the nth kind
k(T)	 –	 coefficient of heat conductivity of the 

half-space, [Wm–1K–1]
k0	 –	 coefficient of heat conductivity of the 

half-space for the reference temperature, 
[Wm–1K–1]

q(r, z)	 –	 heat flux vector, [W]
T(r, z)	 –	 temperature in the half-space, [K]

T0	 –	 reference temperature, [K]
x, y, z	 –	 cylindrical co-ordinate system

Greek symbols

α, β	 –	 constants related to heat conductivity 
coefficient function

Γ(•)	 –	 Gamma function
Ψ(r, z)	 –	 thermal potential function
ϑ	 –	 function of temperature in circle zone
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