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In this paper, we consider the general fractional-order derivatives of the Liou-
ville-Sonine-Caputo and Liouville-Sonine type containing the Lorenzo-Hartley 
kernel. A general fractional-order model for the wave equation with the analytical 
solution is discussed in detail. The general fractional-order formula is accurate 
and efficient for description of the complex, power-law and memory behaviors for 
the mining rock. 
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Introduction

The linear and non-linear models for the wave motion have been successfully ob-
served an investigated in the mining rock [1-3]. For example, the linear Guyer-McCall-Boitnott 
equation of the motion describe 1-D wave propagation in the mining rock was reported [4]. The 
linear McCall equation of the motion describe 1-D wave propagation in the mining rock was 
considered [5]. The linear McCall-Guyer wave equation of the motion in the mining rock was 
presented [6]. 

Recently, the general fractional-order derivatives of the Liouville-Sonine and Liou-
ville-Sonine-Caputo types containing the Lorenzo-Hartley kernel was proposed [7]. The main 
goal of the paper is to the linear McCall equation of the motion describe 1-D wave propa-
gation in the mining rock in the sense of the general fractional-order derivative of the Liou-
ville-Sonine-Caputo type. 

General fractional-order derivatives  
containing the Lorenzo-Hartley kernel

In this section, we investigate the general fractional-order calculus, inclusive of the 
general fractional-order derivatives and integrals [7]. 
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General fractional-order integral operators  
containing the Lorenzo-Hartley kernel 

The left-sided general fractional-order integral operator containing the Lorenzo-Hart-
ley kernel are expressed [7]: 
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and the right-sided general fractional-order integral operator containing the Lorenzo-Hartley 
kernel:
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respectively, where the Lorenzo-Hartley function is defined [8]: 
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If the Laplace transform operator is defined [7]:
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then the Laplace transform of eq. (3) can be given [7]:
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When a = 0, the general fractional-oder integral operator containing the Lorenzo-Hart-
ley kernel are expressed [7]:
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General fractional-order derivatives of the Liouville-Sonine type 

The left-sided general fractional-order derivative of the Liouville-Sonine type con-
taining the Lorenzo-Hartley kernel is defined [7]: 
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and the right-sided general fractional-order derivative of the Liouville-Sonine type containing 
the Lorenzo-Hartley kernel [7]:
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When a = 0, eq. (5) can be re-written [7]: 
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and the Laplace transform of eq. (9) [7]:
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General fractional-order derivatives of  
the Liouville-Sonine-Caputo type 

The left-sided general fractional-order derivative of the Liouville-Sonine-Caputo type 
containing the Lorenzo-Hartley kernel is defined [7]:

 ( ) ( ) ( ) ( ) ( ) ( )LSC , , ,
H HD = d

t
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k t I k t t kακ κα κ γ α γ
α γ τ τ τ+ +
  = ℵ − −   ∫  (11)

and the right-sided general fractional-order derivative of the Liouville-Sonine-Caputo type con-
taining the Lorenzo-Hartley kernel [7]:
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When a = 0, eq. (8) becomes [7]: 
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and the Laplace transform of eq. (13) [7]:
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General fractional-order integrals 

The left-sided general fractional-order integral is defined [7]: 
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and the right-sided general fractional-order integral [7]:
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When a = 0, eq. (15) can be given [7]: 
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with the Laplace transform [7]:
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For more relations between the general fractional-order derivatives and integrals, [7]. 

A general fractional-order wave  
model with the analytical solution 

We now consider the general fractional-order wave model within the general fraction-
al-order derivative of the Liouville-Sonine-Caputo type containing the Lorenzo-Hartley kernel:
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where the general fractional-order partial derivative is defined: 
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Making use of the Laplace transform of eq. (19), we obtain:
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Suppose that: 
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where µ1, µ2, µ3, and µ4 are the constants, then:
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which from eq. (20) implies:
 µ1 = 0, µ2 = 0 
and
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With the use:
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eq. (27) can be re-written:
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Therefore, the analytical solution of eq. (19) takes the form:
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Conclusion

We have investigated the general fractional-order calculus containing the Loren-
zo-Hartley kernel. A general fractional-order model for the wave equation containing the gener-
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al fractional-order derivative of the Liouville-Sonine-Caputo type containing the Lorenzo-Hart-
ley kernel with the analytical solution is presented with the use of the Laplace transform. The 
result is accurate and efficient for designing of the complex, power-law and memory behaviors 
for the mining rock. 
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t  – time co-ordinate, [m]
x  – space co-ordinate, [m]

Greek symbol

α  – fractional order, [–]


