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In this paper, we consider the general fractional-order derivatives of the Liou-
ville-Sonine-Caputo and Liouville-Sonine type containing the Lorenzo-Hartley
kernel. A general fractional-order model for the wave equation with the analytical
solution is discussed in detail. The general fractional-order formula is accurate
and efficient for description of the complex, power-law and memory behaviors for
the mining rock.
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Introduction

The linear and non-linear models for the wave motion have been successfully ob-
served an investigated in the mining rock [1-3]. For example, the linear Guyer-McCall-Boitnott
equation of the motion describe 1-D wave propagation in the mining rock was reported [4]. The
linear McCall equation of the motion describe 1-D wave propagation in the mining rock was
considered [5]. The linear McCall-Guyer wave equation of the motion in the mining rock was
presented [6].

Recently, the general fractional-order derivatives of the Liouville-Sonine and Liou-
ville-Sonine-Caputo types containing the Lorenzo-Hartley kernel was proposed [7]. The main
goal of the paper is to the linear McCall equation of the motion describe 1-D wave propa-
gation in the mining rock in the sense of the general fractional-order derivative of the Liou-
ville-Sonine-Caputo type.

General fractional-order derivatives
containing the Lorenzo-Hartley kernel

In this section, we investigate the general fractional-order calculus, inclusive of the
general fractional-order derivatives and integrals [7].
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General fractional-order integral operators
containing the Lorenzo-Hartley kernel

The left-sided general fractional-order integral operator containing the Lorenzo-Hart-
ley kernel are expressed [7]:

WLk (2) jx (-7 (t=7)" [k (c)dz (1)

and the right-sided general fractional—order integral operator containing the Lorenzo-Hartley
kernel:

Wk (t jx [ ]k(z’)dz’ )

respectively, where the Lorenzo-Hartley functlon is defined [8]:

© t(K+1 a-1

( ) ZF[ K+1 a] 3)

K

If the Laplace transform operator is defined [7]:
ple(6)]=1(s)=[e( @)
0
then the Laplace transform of eq. (3) can be given [7]:
-1
@{Na (;/t“ )} =5“ (1 - ys’“) (|vs ) (5)

When a =0, the general fractional-oder integral operator containing the Lorenzo-Hart-
ley kernel are expressed [7]:

WIi k()= [N, [ =7 (e=2) Jk(z)ae (6)

O —

General fractional-order derivatives of the Liouville-Sonine type

The left-sided general fractional-order derivative of the Liouville-Sonine type con-
taining the Lorenzo-Hartley kernel is defined [7]:

SD2k(0) = 127 K (O]<f [ o o (e)a @

and the right-sided general fractional-order derlvatlve of the Liouville-Sonine type containing
the Lorenzo-Hartley kernel [7]:

WD (6) = w7 [ (1)) = I N[ =7 (=) | 1O (e)de ®)
When a =0, eq. (5) can be re-written [7]:
D k(r) = 15 K0 (1)] j N [ ]k@ (r)dz 9)

and the Laplace transform of eq. (9) [7]:
p{ DGk ()} =57 (1=y5™) [sk(5)=k(0)] 10)
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General fractional-order derivatives of
the Liouville-Sonine-Caputo type

The left-sided general fractional-order derivative of the Liouville-Sonine-Caputo type
containing the Lorenzo-Hartley kernel is defined [7]:

SEDE k() = 12 [ K (z)]=jxa (-7 (=) [€ ()dz (11)

and the right-sided general fractional-order derivative of the Liouville-Sonine-Caputo type con-

taining the Lorenzo-Hartley kernel [7]:
b

DK () = W1 [ () KD ()= (1) [N [r (e =) |6 () de (12)
When a = 0, eq. (8) becomes [7]: l
SEDG Tk (e) = T [ K (z)]=jxa (-7 (t=)" [€ ()dz (13)

0

and the Laplace transform of eq. (13) [7]:

P k() =5 (1-75) {sws)—zs”k“”(oﬂ (14)
j=1
General fractional-order integrals
The left-sided general fractional-order integral is defined [7]:

t

Nk (n) = [(e=0) T B [ (=0) k() de (15)
and the right-sided general fractior:al-order integral [7]:

aL2 k(1) =(-1)" j(r - t)H”1 E, [—7(r —t)qk(r)dr (16)

When a =0, eq. (15) can be given [7]:
S k()= [(e=of Bl [ (=) J(e)de (17)

0
with the Laplace transform [7]:

go{glg;’("k(t)} =5 (1+7s’“)k(s) (18)

For more relations between the general fractional-order derivatives and integrals, [7].

A general fractional-order wave
model with the analytical solution

We now consider the general fractional-order wave model within the general fraction-
al-order derivative of the Liouville-Sonine-Caputo type containing the Lorenzo-Hartley kernel:
01 (x, t )

PR0G T (x 1) = ——~+sin(7x) (0<x<1z>0) (19)

ox
with the initial and boundary conditions:
oIl (x, 0)

Ox

11(0,¢) =0, T1(1,¢)=0, [1(x,0)=0, and =0 (20)



Cao, A,, et al.: An Analytical Solution for Solving a New General Fractional ...
S986 THERMAL SCIENCE: Year 2019, Vol. 23, Suppl. 3, pp. S983-S987

where the general fractional-order partial derivative is defined:
R0 (x,t) = I‘”[ J I& [ JH( '(x,7)de 1)

Making use of the Laplace transform of eq. (19), we obtain:

011 (x, - e i
#— (l+}/s ) H(x,s):@ (22)

Suppose that:

(x,s)= y,ex“sm(lmw) +ue v (e +,u sin (7ox ) + 1, cos (mx) (23)

where uy, t,, (3, and u4 are the constants, then:
sin (7ux)

[—nz -5 (1 +ys® )_I }[,u} sin (1) + 41, cos(mx) | = (24)

N

which leads:

1 1
11’13:_ N 2 10 /14:0 (25)
§—pm -5 (1+;/s’“)

e—x, e (]+ys"’)7l +l 1

R L R (1 + ys"")

Thus, we obtain:

(s = e 07

which from eq. (20) implies:

My = sin(nx) (26)

ur=0u,=0
and

(x,s)=— —sin (7x) 27

With the use:

::0( nl_ZJ s ’)’(1+Vs ) , nl—zs (1+vs )_l <1 (28)
eq. (27) can be re-written:

Sin(TCX) N 1 i (2-a)i- —a\™!

H(x,s)=— a3 [—?j s 1(1+7/s ) (29)
Therefore, the analytical solution of eq. (19) takes the form:
sin(me) & 1Y a N .
H(x,t):— TEZ )Z(_?j t(z )J (1+}/S ) Eam 21+1( 7t ) (30)
j=0

Conclusion

We have investigated the general fractional-order calculus containing the Loren-
zo-Hartley kernel. A general fractional-order model for the wave equation containing the gener-
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al fractional-order derivative of the Liouville-Sonine-Caputo type containing the Lorenzo-Hart-
ley kernel with the analytical solution is presented with the use of the Laplace transform. The
result is accurate and efficient for designing of the complex, power-law and memory behaviors
for the mining rock.
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Nomenclature

t —time co-ordinate, [m] Greek symbol

Xx —space co-ordinate, [m] o — fractional order, [-]
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