A NEW GENERAL FRACTIONAL-ORDER WAVE MODEL INVOLVING MILLER-ROSS KERNEL

by

Linming DOU^{*a,b*}, Xiao-Jun YANG^{*c,d^{*}*}, and Jiangen LIU^{*e*}

 ^a Key Laboratory of Deep Coal Resource Mining (China University of Mining and Technology), Ministry of Education, Xuzhou, China
 ^b School of Mines, China University of Mining and Technology, Xuzhou, China
 ^c State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, China
 ^d School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou, China

^e School of Mathematics, China University of Mining and Technology, Xuzhou, China

Original scientific paper https://doi.org/10.2298/TSCI180923245D

In the paper we consider a general fractional-order wave model with the general fractional-order derivative involving the Miller-Ross kernel for the first time. The analytical solution for the general fractional-order wave model is investigated in detail. The obtained result is given to explore the complex processes in the mining rock.

Key words: fractional-order wave model, general fractional-order derivative, Miller-Ross kernel, mining rock

Introduction

The mathematical model for the wave propagation in the mining rock has been investigated by many scientists, see [1-4] and references cited therein. For example, the linear model for the wave propagation:

$$\frac{\partial^2 \Re(x,t)}{\partial t^2} = \frac{\partial}{\partial x} \left[\phi_1 \frac{\partial \Re(x,t)}{\partial x} \right]$$
(1)

where ϕ_1 is a constant and $\Re(x, t)$ – the wave function, was proposed in [5]. As a special case of (1), the linear model for the wave propagation:

$$\frac{\partial^2 \Re(x,t)}{\partial t^2} = \phi_2 \frac{\partial^2 \Re(x,t)}{\partial x^2}$$
(2)

where ϕ_2 is a constant and $\Re(x, t)$ is the wave function, was proposed in [6]. The models can be used to describe 1-D wave propagation in the mining rock. Recently, a general fractional-order derivative within the Miller-Ross kernel [7]. The main aim of the article is to propose the general fractional-order derivative model for the wave propagation based on the general fractional-order derivative involving the Miller-Ross kernel [8] and to investigate its analytical solution.

^{*}Corresponding author, e-mail: dyangxiaojun@163.com

A general fractional-order calculus involving the Miller-Ross kernel

In this section, we introduce the general fractional-order derivative involving the special function, which proposed in by Miller and Ross, see [8], from the point of view of the general fractional-order calculus application.

The Miller-Ross function and its Laplace transform

For the given real constant, λ , the Miller-Ross function with one-parameter constant λ is defined [7, 8]:

$$\wp_{\alpha}\left(\lambda t^{\alpha}\right) = t^{\alpha} \sum_{\kappa=0}^{\infty} \frac{\lambda^{\kappa} t^{\kappa}}{\Gamma\left(\kappa+1+\alpha\right)} = \sum_{\kappa=0}^{\infty} \frac{\lambda^{\kappa} t^{\kappa+\alpha}}{\Gamma\left(\kappa+1+\alpha\right)} \tag{1}$$

with the Laplace transform [8]:

$$L\left\{\wp_{\alpha}\left(\lambda t\right)\right\} = L\left\{\sum_{\kappa=0}^{\infty} \frac{\lambda^{\kappa} t^{\kappa+\alpha}}{\Gamma\left(\kappa+1+\alpha\right)}\right\} = \sum_{\kappa=0}^{\infty} \frac{\lambda^{\kappa}}{s^{\kappa+\alpha+1}} = s^{-(\alpha+1)} \left(1-\lambda s^{-1}\right)^{-1} \left(\left|\lambda s^{-1}\right| < 1\right)$$
(2)

where the Laplace transform operator of the function u(t) is represented [7]:

$$\Im[u(t)] = u(s) = \int_{0}^{\infty} e^{-st} u(t) dt$$
(3)

A general fractional-order integral operators

involving the Miller-Ross kernel

The left-sided general fractional-order integral operator involving the Miller-Ross kernel is defined [7]:

$${}_{\mathrm{MR}}I^{\alpha,\lambda}_{a+}j(t) = \int_{a}^{t} \mathscr{D}_{\alpha} \left[-\lambda \left(t - \tau \right)^{\alpha} \right] j(\tau) \mathrm{d}\tau$$

$$\tag{4}$$

and the right-sided general fractional-order integral operator involving the Miller-Ross kernel:

$${}_{\mathrm{MR}}I^{\alpha,\lambda}_{b-}j(t) = \int_{t}^{b} \mathscr{D}_{\alpha} \left[-\lambda(\tau - t)^{\alpha} \right] j(\tau) \mathrm{d}\tau$$
(5)

When a = 0, the general fractional-order integral operator involving the Miller-Ross kernel become:

$${}_{\mathrm{MR}}I_{0+}^{\alpha,\lambda}j(t) = \int_{0}^{t} \wp_{\alpha} \left[-\lambda \left(t - \tau \right)^{\alpha} \right] j(\tau) \mathrm{d}\tau$$
(6)

with its Laplace transform:

$$\Im \Big[{}_{\mathrm{MR}} I_{0+}^{\alpha,\lambda} j(t) \Big] = s^{\alpha+1} \Big(1 + \lambda s^{-1} \Big) j(s)$$
(7)

General fractional-order derivatives involving the Miller-Ross kernel

The left-sided general fractional-order derivative of the Riemann-Liouville type involving the Miller-Ross kernel is defined [7]:

$${}_{\mathrm{MR}}^{\mathrm{RL}} \mathcal{D}_{a+}^{\alpha,\kappa,\lambda} j(t) = \frac{\mathrm{d}^{\kappa}}{\mathrm{d}t^{\kappa}} \Big[{}_{\mathrm{MR}} I_{a+}^{\alpha,\lambda} j(t) \Big] = \frac{\mathrm{d}^{\kappa}}{\mathrm{d}t^{\kappa}} \int_{a}^{t} \mathscr{D}_{\alpha} \Big[-\lambda \big(t-\tau\big)^{\alpha} \Big] j(\tau) \mathrm{d}\tau \tag{8}$$

and the right-sided general fractional-order derivative of the Riemann-Liouville type involving the Miller-Ross kernel:

$${}^{\mathrm{RL}}_{\mathrm{MR}} \mathcal{D}^{\alpha,\kappa,\lambda}_{b-} j(t) = \left(-\frac{\mathrm{d}}{\mathrm{d}t}\right)^{\kappa} \left[{}_{\mathrm{MR}} I^{\alpha,\lambda}_{b-} j(t) \right] = \left(-\frac{\mathrm{d}}{\mathrm{d}t}\right)^{\kappa} \int_{t}^{b} \mathscr{D}_{\alpha} \left[-\lambda \left(\tau - t\right)^{\alpha}\right] j(\tau) \mathrm{d}\tau \tag{9}$$

where κ is the positive integer numbers.

The left-sided general fractional-order derivative of the Liouville-Sonine type involving the Miller-Ross kernel is defined [7]:

$${}_{\mathrm{MR}}^{\mathrm{LS}} \mathcal{D}_{a+}^{\alpha,\lambda} j(t) = {}_{\mathrm{MR}} I_{a+}^{\alpha,\lambda} \left[j^{(1)}(t) \right] = \int_{a}^{t} \wp_{\alpha} \left[-\lambda \left(t - \tau \right)^{\alpha} \right] j^{(1)}(\tau) \mathrm{d}\tau$$
(10)

and the right-sided general fractional-order derivative of the Liouville-Sonine type within the Miller-Ross kernel:

$${}_{\mathrm{MR}}^{\mathrm{LS}} \mathbf{D}_{b-}^{\alpha,\lambda} j(t) = {}_{\mathrm{MR}} I_{b-}^{\alpha,\lambda} \left[-j^{(1)}(t) \right] = -\int_{t}^{b} \wp_{\alpha} \left[-\lambda \left(\tau - t \right)^{\alpha} \right] j^{(1)}(\tau) \mathrm{d}\tau$$
(11)

The left-sided general fractional-order derivative of the Liouville-Sonine-Caputo type involving the Miller-Ross kernel is defined [7]:

$${}_{\mathrm{MR}}^{\mathrm{LS}} \mathbf{D}_{a+}^{\alpha,\kappa,\lambda} j(t) = {}_{\mathrm{MR}} I_{a+}^{\alpha,\lambda} \Big[j^{(\kappa)}(t) \Big] = \int_{a}^{t} \wp_{\alpha} \Big[-\lambda (t-\tau)^{\alpha} \Big] j^{(\kappa)}(\tau) \mathrm{d}\tau$$
(12)

and the right-sided general fractional-order derivative of the Liouville-Sonine-Caputo type within the Miller-Ross kernel:

$${}^{\mathrm{LSC}}_{\mathrm{MR}} \mathbf{D}_{b_{-}}^{\alpha,\kappa,\lambda} j(t) = {}_{\mathrm{MR}} I_{b_{-}}^{\alpha,\lambda} \left[\left(-1\right)^{\kappa} j^{(\kappa)}(t) \right] = \left(-1\right)^{\kappa} \int_{t}^{b} \wp_{\alpha} \left[-\lambda \left(\tau - t\right)^{\alpha} \right] j^{(\kappa)}(\tau) \mathrm{d}\tau$$
(13)

The relation between the general fractional-order derivative of the Riemann-Liouville and Liouville-Sonine types is given [7]:

$${}_{\mathrm{MR}}^{\mathrm{LSC}} D_{0+}^{\alpha,\lambda} j(t) = {}_{\mathrm{MR}}^{\mathrm{RL}} D_{0+}^{\alpha,1,\lambda} j(t) - \wp_{\alpha} \left(-\lambda t^{\alpha}\right) j(0)$$
(14)

The Laplace transforms of the general fractional-order derivatives can be given [7]:

$$\Im \left[{}_{\mathrm{MR}}^{\mathrm{RL}} \mathbf{D}_{0+}^{\alpha,\kappa,\lambda} j(t) \right] = s^{\kappa-\alpha-1} \left(1 + \lambda s^{-1} \right)^{-1} j(s)$$
(15)

$$\mathfrak{I}\left[{}^{\mathrm{LS}}_{\mathrm{MR}} \mathcal{D}_{0+}^{\alpha,\lambda} j(t) \right] = s^{-\alpha-1} \left(1 + \lambda s^{-1} \right)^{-1} \left[sj(s) - j(0) \right]$$
(16)

and

$$\mathfrak{J}\left[\sum_{MR}^{LSC} \mathbf{D}_{0+}^{\alpha,\lambda} j(t) \right] = s^{-\alpha-1} \left(1 + \lambda s^{-1} \right)^{-1} \left(s^{\kappa} j(s) - \sum_{j=1}^{\kappa} s^{\kappa-j} j^{(j-1)}(0) \right)$$
(17)

A new general fractional-order wave model

We now consider a new general fractional-order wave model containing the general fractional-order derivative of the Liouville-Sonine type within the Miller-Ross kernel:

$${}^{\text{LSC}}_{\text{MR}}\partial^{\alpha,2,\lambda}_{0+}\Re(x,t) = \frac{\partial^2\Re(x,t)}{\partial x^2} \quad (x > 0, \ t > 0)$$
(18)

subjected to the initial and boundary conditions:

$$\Re^{(1)}(x,0) = 0, \ \Re(x,0) = 0, \ \Re(0,t) = 0, \ \Re(+\infty,t) = 0$$
(19)

where the general fractional-order partial derivatives of orders 2 and 1 are defined:

$${}^{\mathrm{LSC}}_{\mathrm{MR}}\partial^{\alpha,2,\lambda}_{0+}\Re(x,t) = \int_{0}^{t} \wp_{\alpha} \left[-\lambda \left(t - \tau \right)^{\alpha} \right] \Re^{(2)}(x,\tau) \mathrm{d}\tau$$
(20)

and

$${}^{\mathrm{LSC}}_{\mathrm{MR}}\partial^{\alpha,\lambda}_{0+}\Re(x,t) = \int_{0}^{t} \mathscr{D}_{\alpha} \left[-\lambda \left(t - \tau \right)^{\alpha} \right] \Re^{(1)}(x,\tau) \mathrm{d}\tau$$
(21)

respectively.

With the use of the Laplace transform, we present:

$$\frac{\partial^2 \Re(x,s)}{\partial x^2} = s^{1-\alpha} \left(1 + \lambda s^{-1}\right)^{-1} \Re(x,s)$$
(22)

with the general solution, given:

$$\Re(x,s) = \Lambda_1 e^{-x\sqrt{s^{1-\alpha}(1+\lambda s^{-1})^{-1}}} + \Lambda_2 e^{x\sqrt{s^{1-\alpha}(1+\lambda s^{-1})^{-1}}}$$
(23)

where Λ_1 and Λ_2 are the constants.

Finally, we have $\Lambda_2 = 0$ and $\Lambda_1 = 0$ and such that:

$$\Re(x,s) = e^{-x\sqrt{s^{1-\alpha}(1+\lambda s^{-1})^{-1}}} = e^{-xs^{\frac{1-\alpha}{2}}(1+\lambda s^{-1})^{-1/2}}$$
(24)

Thus, we have:

$$\Re(x,s) = \sum_{n=0}^{\infty} \frac{(-x)^n}{\Gamma(n+1)} s^{-\frac{(\alpha-1)n}{2}} (1+\lambda s^{-1})^{-n/2}$$
(25)

which leads to:

$$\Re(x,t) = \sum_{n=0}^{\infty} \frac{(-x)^n}{\Gamma(n+1)} t^{\frac{(\alpha-1)n}{2}-1} E_{1,\frac{(\alpha-1)n}{2}}^{n/2} (-\lambda t)$$
(26)

where the Laplace transform of the generalized Prabhakar function is written [7]:

$$\Im\left[t^{\frac{(\alpha-1)n}{2}-1}E_{1,\frac{(\alpha-1)n}{2}}^{n/2}\left(-\lambda t\right)\right] = \sum_{n=0}^{\infty}\frac{(-x)^{n}}{\Gamma\left(n+1\right)}s^{-\frac{(\alpha-1)n}{2}}\left(1+\lambda s^{-1}\right)^{-n/2}$$
(27)

Conclusion

In our task, we investigate the new general fractional-order wave model with the general fractional-order derivative involving the Miller-Ross kernel. With the aid of the Laplace transform, we obtain the analytical solution. The special functions are accurate and efficient for descriptions of the mining rock.

Acknowledgment

The work is supported by the Fundamental Research Funds for the Central Universities (2017CXNL01).

Nomenclature

 α - fractional order, [-] x - space co-ordinate, [m] t - time co-ordinate, [m]

Dou, L., *et al.*: A New General Fractional-Order Wave Model Involving ... THERMAL SCIENCE: Year 2019, Vol. 23, Suppl. 3, pp. S953-S957

References

- Crampin, S., A Review of Wave Motion in Anisotropic and Cracked Elastic-Media, *Wave Motion*, 3 (1981), 4, pp. 343-391
- [2] Anderson, D. L., Elastic Wave Propagation in Layered Anisotropic Media, *Journal of Geophysical Research*, 66 (1961), 9, pp. 2953-2963
- [3] Perino, A., et al., Theoretical Methods for Wave Propagation Across Jointed Rock Masses, Rock Mechanics and rock engineering, 43 (2010), 6, pp. 799-809
- [4] Wilson, R. K., et al., A Double Porosity Model for Acoustic Wave Propagation in Fractured-Porous Rock, International Journal of Engineering Science, 22 (1984), 8-10, pp. 1209-1217
- [5] McCall, K. R, Theoretical Study of Non-Linear Elastic Wave Propagation, Journal of Geophysical Research: Solid Earth, 99 (1994), B2, pp. 2591-2600
- [6] Postma, G. W., Wave Propagation in a Stratified Medium, Geophysics, 20 (1955), 4, pp. 780-806
- [7] Yang, X. J., General Fractional Derivatives: Theory, Methods and Applications, CRC Press, New York, USA, 2019
- [8] Miller, K. S., et al., An Introduction the Fractional Calculus and Fractional Differential Equations, John Wiley and Sons, New York, USA, 1993