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In this paper, a new discontinuous Galerkin method is employed to study the 
non-linear heat conduction equation with temperature dependent thermal con-
ductivity. We present practical implementation of the new discontinuous Galerkin 
scheme with weighted flux averages. The second-order implicit integration factor 
for time discretization method is applied to the semi discrete form. We obtain the 
L2 stability of the discontinuous Galerkin scheme. Numerical examples show that 
the error estimates are of second order when linear element approximations are 
applied. The method is applied to the non-linear heat conduction equations with 
source term.
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Introduction

We consider the following fully non-linear parabolic equation [1]:

	 [ ( , ) ] ( , ), ( , ) [0, ]tu x u u f x u x t Tκ−∇ ∇ = ∈Ω 	 (1)    
with boundary conditions:
	 ( , ) 0, ( , ) [0, ]x t u x t Tκ ∇ = ∈∂Ωn 	 (2)
and the initial condition:
	 0( ,0) ,( )u u xx x= ∈Ω 	 (3)

where Ω is a bounded domain in Rd. The diffusion coefficient κ(x, u) is assumed to be bounded 
uniformly from below and from above 0 < κ*

 ≤ κ(x, u) ≤ κ*. We also assume that f(x,u) is uni-
formly Lipschitz continuous with respect to the second variable.

In this work, we will construct a new discontinuous Galerkin (DG) scheme for eq. 
(1). The DG method was originally proposed by Reed et al. [2] for neutron transport equa-
tions. Then the major development of the DG method for hyperbolic conservation laws was 
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made with the work of Cockburn and Shu [3]. Their schemes are termed as the Runge-Kutta 
discontinuous Galerkin (RKDG) method. An important component of the RKDG method is the 
numerical flux which is borrowed from the finite volume schemes [4]. In the current work, we 
propose a new weighted average in the DG Schemes and extend it to the non-linear parabolic 
eq. (1). 

The efficient and high order temporal numerical scheme is a challenging task for the 
fully non-linear parabolic problem. In this paper we develop a more accurate time discretiza-
tion method which is based on the implicit integration factor (IIF) methods. The new scheme is 
constructed by expanding the non-linear diffusion coefficient with Taylor expansion but leav-
ing the source term on the present time level. It allows for the second-order time convergence 
which agrees with the spatial accuracy. In this paper we approximate the matrix-vector product 
directly by Krylov subspace method as in the paper [5, 6]. Our test problem consists of a set of 
non-linear heat transfer problem which is very important in engineering areas [7-9]. 

The weighted DG scheme

In order to describe the flux functions we need to introduce some notations. Denot-
ing  ue

1 and ue 
2 

the trace of u(x, y) on face e taken from within elements Δe
1 and Δe

2, i. e. that  
ue

1 = {u(x, y):(x, y) ∈ Δe
1, (x, y) → e}, ue 

2 
= {u(x, y):(x, y) ∈ Δe

2, (x, y) → e}. Now we define the 
jump of a function u on e as [u] = ue 

2 – ue
1 . We define the DG approximation space: 

	 { }2( ) : ( ), 1, 2,
m

k
h m eV v L v P m N∆= ∈ Ω ∈ ∆ = 

	 (4)

where Pk(Δm)
 
denotes the space of polynomials of total degree less than or equal to k on ele-

ment, Δm.
The semi-discrete scheme on each computational cell is defined as follows, find uh ∈ Vh, such that:

	 ( )ˆ( ) d d ( , , ) d d d d ( , , ) d d
m m m m

h t h h h hu v x y x y u u v x y h u v x y f x y u v x yκ
∆ ∆ ∂∆ ∆

+ ∇ ∇ − =∫ ∫ ∫ ∫ 	 (5)

The numerical flux on common edge e ∈ ∂Δm is defined:

	 ( ) [ ] ( ) 12
ˆ (1 )( )e ee

h e h e h e hh u u w u w u
e
β

α κ κ= + ∇ + − ∇n n 	 (6)

In the preceding subsection we will prove the stability of the semidiscrete form. We 
first define the norm: 

	 2 2
2 2 2 2 2 2

( ) ( )
1

| || || | d d , || || d and || || d d
e

m
m m

N

h h h h h hL e L
m e

u u x y u u s u u x y
∆

= ∆ ∆

= = =∑ ∫ ∫ ∫
For each Δm ∈ Th and v ∈ Pk (Δm), let e be an edge of Δm. Then there exists a positive 

constant C depending only on k such that the following local inverse inequality holds:

	 2 2
1/2

( ) ( )m
mL e L

v Ch v−
∆

∇ ≤ ∇n 	 (7)

Assume that  βe  is large enough in numerical flux (6) and f(x, y, u) ∈  L2[0, t, L2(Ω )].
 Then the solution of eq. (5) satisfies:

	
2 2

0

 ( )   (0)   ( )  d
t

h h hu t C u f u s
 

≤ + 
 

∫ 	 (8)
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To prove the correctness of the conclusion (8), one sums up for the equalities (5) over 
all elements and set v = uh, we have the following identity:

	 2

1 1

1 ˆ( ) ( , , ) d d ( )[ ]d ( , , )
2

e e

hm m

N N

h t h h h h h h h
m e me

u x y u u u x z h u u s f x y u u dxdy
ε

κ
= ∈ =∆ ∆

 + ∇ ∇ + =  
∑ ∑ ∑∫ ∫ ∫ 	 (9)

We first give an estimate of the third term on the left hand side of (9). By using the 
definition of numerical flux (6) and trace inequality (7), we have:

	

( )[ ] [ ] ( ) ( )( ) [ ]

[ ] ( ) ( )( )
( )

2 2
2 1 2

2

2 1

1/2
2 2 2

ˆ d 1 d

d e e
L e

e ee
h h e h e h e h h

e e

e e
e h h h hL L

e

h u u s u w u n w u n u s
e

u s C u u u
e e

β
α κ κ

β σ
α κ∗

∆ ∆

   = + ∇ + − ∇ ≥    

≥ − ∇ + ∇

∫ ∫

∫

Throughout C is used to denote a generic positive constant, not necessarily the same 
at each occurrence. By the triangle inequality and Young inequality, we get:

	 ( )[ ] ( ) ( ) ( )2 2 2

1/2 1/2
2 2 2

1

1ˆ d 2
e

m
h h h

N
e

h h e h e h hL e L e L
e e e me

h u u s u C u u
e eε ε ε

β
α κ σ∗

∆
∈ ∈ ∈ =

    ≥ − ∇   
    

∑ ∑ ∑ ∑∫

Replacing the estimate into (9) and by the Holder inequality and Young inequality, 
we obtain:

	

2 2

2

2 2
2 2 2

2( ) ( )
1

2
2( )( )

1

( )1 d ||| ( ) ||| (1 ) || || || [ ] || d
2 d | |

|| ( ) || || ||

e

m
h

e

mm

N
e e

h h e hL L e
m e e

N

h h LL
m

C
u t u u s

t e

f u u

ε

α κ σ
δ κ β

κ δα

∗

∆
= ∈ ∗

∆∆
=

 
+ − ∇ + − ≤ 

 

≤

∑ ∑

∑ 	 (10)

Multiply the eq. (10) and integrate with respect time from 0 to t:	

	

2 2

2 2
2 2 2

2( ) ( )
10 0

2 2 2

0 0

( )
||| ( ) ||| (1 ) || || d || [ ] || d

| |

||| ( ) ||| d ||| ( ) ||| d ||| (0) |||

e

m
h

t tN
e e

h h e hL L e
m e e

t t

h h h

C
u t u s u s

e

u t s u s s u

ε

α κ σ
δ κ β

κ δα

∗

∆
= ∈ ∗

 
+ − ∇ + − ≤ 

 

≤ + +

∑ ∑∫ ∫

∫ ∫ 	 (11)

Taking δ < 1 and βe large enough so that βe > C(κ*)2 σ2
e /(κ2

*δαe) we complete the proof 
of the L2 stability by the Gronwall inequality.

The integration factor time discretization

Now we are ready to introduce the fully discretization of the semi-discrete form (5). 
The local systems (5) on each element are assembling to get the global non-linear ODE: 

	 d ( ) ( )
d
U A U U F U
t
= + 	 (12)

where U = (UT
1, U

T
2,...,U

T
N)T

 
being the freedoms of u on every element, A(U)

 
is the non-linear 

global sparse matrix and F(U) = (fT
1,...,f

T
N)T.

In order to apply the integration factor method, the non-linear matrix A(U)
 
need be 

approximated by the values of U at previous time levels. First we consider the first-order inte-
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gration factor method. The non-linear diffusion coefficients are evaluated at previous time level, 
i. e. that κ(x, un). We get following ODE system:

	 d ( ) ( )
d

nU A U U F U
t
= + 	 (13)

The matrix A(Un) is a constant matrix. Multiply by the integration factor e– A(Un)t and 
integrate over one time step from tn to tn+1 to obtain: 

	 1 ( ) ( ) ( )

0

e e e [ ( )]d
n n n

t
n A U t n A U t A U nU U F U tτ τ τ

∆
+ ∆ ∆= + +∫  	 (14) 

The integrand is approximated by trapezium method and the semi-implicit integration 
factor scheme:

	 ( ) ( )1 ( ) 1e
2 2

nn A U t n n nt tU U F U F U+ ∆ +∆ ∆ = + +  
	 (15)

To get more accurte time discretization method, we expand the non-linear diffusion 
coefficient with Taylor expansion:

	 ( ) ( ) ( ) ( ) ( )2
, , ,n n n n n

ux u x u x u u t t O t tκ κ κ  = + − + −  
 	 (16)

We approximate u⋅ n with u⋅ n = un – un–1/Δt and ignore the O[(t – tn)2]
 
term to get:

	 ( ) ( ), nx u a b t tκ = + − 	 (17)

where a and b are constants.
With the second-order approximation of κ(x, u) at tn, we get the new global ODE 

systems:
	

d [ ( )] ( )
d

nU A B t t U F U
t
= + − + 	 (18)

The constant matrixes A and B can be obtained from the constants a and b a in eq. 
(17). Multiply eq. (18) by the integration factor:

	  
0

( )d

e

nt t

A Bτ τ
−

− +∫

and integrate over one time step from tn to tn+1 to obtain:

	
( ) ( ) ( ) ( )

1

0 0 0

d d  d1 e e e d

t t
n nt t

n

tA B A B A Bn n

t

U U F U t
τ τ τ τ τ τ

∆ ∆
+ −+ +

− ++
∫ ∫ ∫= + ∫ 	 (19)

Applying the second order implicit integration factor scheme:

	 ( ) ( )1 12e
2 2

BA t t
n n n nt tU U F U F U

 + ∆ ∆ + +  ∆ ∆ = + +  
	 (20)

The second order semi-implicit IF scheme can be written:

	 ( )11 1
1 1 2

n
mtHn n n n

m
tU V e e F Uβ +∆+ +

+

∆
= + 	 (21)

After the obtainment of  1
1 1

n
mtHn n

mV e eβ +∆
+  with Krylov subspace, we can solve the non-lin-

ear on each element Δm. 
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Numerical test

Example 1. Consider the following non-linear parabolic equation:
	 2( ) ( , , ), ( , ) [0,1]tu u u f x y t x y= ∇ ∇ = ∈

with the homogeneous Neumann boundary 
condition. We give the errors for three dif-
ferent levels of meshes in tab. 1 at t = 0.1.  
From this table, we can obtain the sec-
ond-order accuracy of our DG scheme.

Example 2. The idealized dimension-
less equation with the temperature depen-
dent thermal conductivity can be written: 

	 ( )3 4d 1
d
T T T T
t
−∇ ∇ = − 	 (24)

The left boundary condition is defined:

	 1 ( ) 10, 0 8, 0, 8 10
4 6

T T TT y y
n n

κ ∂ ∂
+ = < < = < <

∂ ∂

The right boundary condition:

	 1 ( ) 0, 0 8, 0, 8 10
4 6

T T TT y y
n n

κ ∂ ∂
+ = < < = < <

∂ ∂
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Figure 1. Conurs of temperature of Example 2 at t = 0.25 and t = 0.5

This model shows the conduction of heat flow which is introduced from the left side, 
and flows out on the right side. The numerical results at t = 0.25 and t = 0.5 are plotted in  
fig. 1. It is seen that the numerical results agree well with those [1]. The numerical results 
proved that our DG scheme can effectively capture the steep temperature profiles. And also our 
scheme can preserve positivity of solution on triangle meshes without flux limiters

Conclusion

We have presented an efficient numerical method for the solution of non-linear par-
abolic problems, which is based on the space discretization by the weighted discontinuous 
Galerkin finite element method and the second-order implicit integration factor for time discret-

Table 1. The L2, L∞ error and order of  
convergence for second-order scheme at t = 0.1

CFL L2 Order L∞ Order

0.2 4.48e-4 – 7.32e-4 –

0.1 1.08e-4 2.05 1.86e-4 1.98

0.05 1.97e-5 2.45 4.61e-5 2.01
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ization. The obtained results confirm that our DG method is a powerful and reliable method for 
the numerical solution of non-linear diffusion problems.
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