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In this article, a new method, which is coupled by the variational iteration and re-
duced differential transform method, is proposed to solve local fractional differen-
tial equations. The advantage of the method is that the integral operation of vari-
ational iteration is transformed into the differential operation. One test examples 
is presented to demonstrate the reliability and efficiency of the proposed method.
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Introduction

In the last few decades, many types of fractional calculus have been introduced in 
[1]. However, most fractional derivatives are globally defined, so they are not suitable to reflect 
local geometric behaviors of a given function. Thence a few of local fractional derivatives [2-5] 
have been defined by modifying the definition of popular non-local fractional derivatives and 
making them local. Among these local fractional derivatives, one local fractional derivative 
[4] is developed to deal with non-differentiable functions defined on Cantor fractal space. The 
local fractional calculus [5] has been used to process many equations resulting from practical 
problems, for example, the non-linear local fractional FitzHugh-Nagumo and Newell-White-
head equations [6], the fractal heat transfer in silk cocoon hierarchy [7], the electric circuit [8], 
the wave equation [9], etc. The list is obviously not complete. Many methods have been devel-
oped to find the analytic solutions of the local fractional differential equations, for example, the 
Yang-Fourier transforms method [10], the local fractional homotopy perturbation method [11], 
the fractional complex transform method [12], the local fractional Laplace series expansion 
method [13], the Sumudu transform and the variational iteration method [14], the Yang-Laplace 
method [15], the hybrid computational approach [16-18], etc. Among these methods, it is worth 
noting that the local fractional variational iteration method could be used to solve various types 
of local fractional differential equations. In this paper, by coupling the local differential trans-
form method, we enrich the local fractional variational iteration method in the form of series, 
while maintaining the high accuracy of the method. 

Preliminaries

In this section, we introduce some definitions and basic results of the local fractional 
differential calculus, which shall be applied in this article.
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Definition 1. The α(0 <
 
α ≤ 1) order local fractional derivative of the function ϑ(x) at 

x0 is defined [4, 5]:
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Definition 2. In the interval [c, d],
 
the local fractional integral of ϑ(t) of order  

α(0 <
 
α ≤ 1) is defined [4, 5]:
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where Δtj = tj+1 – tj and, j = 0,...,N – 1, t0 = c, tN = d is a partition of the interval [c, d].
Definition 3. The 2-D local fractional reduced differential transform Θ(k, m) of the 

function ϑ(t, x) is defined by the following eq. [19]:

 ( ) ( ){ } ( ) ( ) ( ),
0, 0

1, , ,
1 1

k m

k m k m
x t

k m DT t x t x
k m t x

α α

α αϑ ϑ
α α

+

= =

 ∂
Θ = =  Γ + Γ + ∂ ∂ 

  (3)
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The process of the new method

In this section, in order to present the technique and the process of the method coupled 
variational iteration and reduced differential transform method, we give the following local 
fractional differential equation:
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where Lα and Rα are linear and non-linear operator, respectively, which all have differential 
order less than k0(k0 ≥ 1) with respect to variable, and µ(t, x) is the source term.

In light of the local fractional variational iteration formula, the correction function for 
eq. (5) is constructed [4]:
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where κα(τ, t)/ Γ(1 + α) is a Lagrange multiplier.
If ϑ

~
n(τ, x) is a restricted variation, i. e. δαϑ

~
n(τ, x) = 0, according to [4], we can derive:
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From eqs. (6) and (7) we can construct the following iteration procedure for eq. (5): 
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Taking the mixed partial derivative with respect to the variables t and x on both sides 
of eq. (8), we can obtain: 
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where ϑn = ϑn(τ, x), and
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According to eq. (9) and taking the 2-D local fractional reduced differential transform 
with respect to the variables t and x on both sides of eq. (8), we can obtain:
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where ϑ0(t, x) is an initial value.
With the use of eq. (10) and taking the 2-D local fractional reduced differential trans-

form with respect to the variables t and x on both sides of eq. (8), we can obtain:
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According to eq. (3) and letting Θ(k, h) = DTk,h{ϑn(τ, x)}, n = 0, 1, 2. 3...,
 
we can re-

write eqs. (11) and (12), respectively:
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and where 
 ( ) ( ) ( ) ( ), , , ,n n nW t x L t x R t x t xα αϑ ϑ µ= + −   (16)

Now, we are reminded of the following convergence conditions of the variational 
iteration method in [20]. If ϑn+1(t, x) satisfies: 
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where γ is a constant and ||•||α is fractional operator norm, then lim
n→∞ 

ϑn(t, x) converges and the 
convergence function is an exact solution of the eq. (5).

In conclusion, if ϑn+1(t, x) satisfies eq. (17)，the analytic solution of eq. (5) can be 
given by the following series form:
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The method indeed provides an efficient tool to solve differential equation. Now, we 
consider the exact solution of the following linear differential equations: 

 ( ) ( ) ( ) ( ) ( )
2 2

1 2 3 42 2

, , , ,
, 0

t x t x t x t x
t x

t x t x

α α α α

α α α α

ϑ ϑ ϑ ϑ
ρ ρ ρ ρ ϑ

∂ ∂ ∂ ∂
+ + + + =

∂ ∂ ∂ ∂
 (19)

where ρi, (i = 1, 2, 3, 4) are all constants. Obviously, eq. (19) is an essential special case of eq. (5).
By virtue of Eq. (8), the iteration algorithm is offered: 
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where ϑn = ϑn(τ, x). 
Taking local fractional reduced differential transform with respect to the variables t 

and x on both sides of eq. (20), we successively obtain systems of equations: 
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Employing eq. (10), we rewrite eq. (21) as the following eqs. (22) and (23):
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An illustrative example

To illustrate the techniques presented in the previous section, we give the following 
example to demonstrate the effectiveness of our proposed method.

Consider the following local fractional Laplace equation:
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subject to the initial condition:
 ( ) ( )0, 1 cosx xααϑ = +  (26)

According to eqs. (22), (23), and (25) the following iteration relation can be derived:
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By virtue of eq. (26), we take the initial value:
 ( ) ( )0 0, 1 cosx xααϑ = +  (29)

From eq. (29), we derive:
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Using eqs. (27), (28), and (31), we can get:
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Similarly, using eqs. (27), (28), and (30), we can get: 
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Then, according to eqs. (32)-(35), we can induce:
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where p and l ∈ N.
From eq. (24), the exact solution of eq. (25) can be given: 
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Conclusion

In this task, we tried to couple the local fractional variational iteration with reduced 
differential transform method for solving local fractional differential equations. The example 
shows that our method can be easier to analyze the convergence solution or approximate solu-
tion.
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Nomenclature
t – time co-ordinate, [s]
x – space co-ordinate, [m]

Greek symbols

α – fractal order, [–]
ϑ(t, x) – temperature distribution, [K]
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