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In this paper, we consider the numerical solution of the time-fractional non-linear
Klein-Gordon equation. We propose a spectral collocation method in both temporal
and spatial discretizations with a spectral expansion of Jacobi interpolation poly-
nomial for this equation. A rigorous error analysis is provided for the spectral meth-
ods to show both the errors of approximate solutions and the errors of approximate
derivatives of the solutions decaying exponentially in infinity-norm and weighted
L*-norm. Numerical tests are carried out to confirm the theoretical results.
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Introduction

Fractional differential equations are the generalization of the traditional differential
equations, and they play more and more important roles in the fields of fluid mechanics, mate-
rial mechanics, biology, plasma physics and finance, and receive more and more attention [1].
The fractional diffusion equations are always used in describing the abnormal Klein-Gordon
phenomenon [2-5] of the liquid in medium. The general form of the time fractional Klein-Gor-
don equation can be written:

82
Dt’u(x,t)—#+§u(x,t)+77F[u(x,t)} =f(x,t), 1<y<2, a<x<b, 0<t<T (1)
X
with initial conditions:
u(x,0)=4(x), u,(x,0)=¢,(x), a<x<b (2)
and boundary conditions:
u(a,t)=w, (1), u(bt)=w, (1), 0<t<T (3)
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Recently, we provided the Legendre-collocation methods and convergence analysis
for the non-linear Volterra type integral equations in [6-8]. The main contribution of this work
is constructing the Jacobi spectral collocation approximation in both space and time to the
non-linear time-fractional Klein-Gordon equation and an analysis of the convergence of the
proposed method.

The Jacobi collocation method

Applying the Riemann-Liouville integral of order y at eq. (1), it yields the following

integral equations:
t

ﬁj(l—r)# {Z[t,r,u(x,r)]+ﬁ[t,r,u(x,r)}}dr+f(x,t)+¢1 (x)+¢2 (x)t 4

0
o'u(x,7)

ox?

Z[t,r,u(x,r)] = (t—r){
f(x,t) =

—§u(x,r):|,ﬁ[t, f,u(x,r)] = —(t—r)r]F[u (x,r)}

oyl r(ee)an w=2-ye(o)

In order to make use of orthogonal polynomials, we make the following transforma-
tion so that the variables in the standard interval [-1, 1]:

xzb—a)_c+b+_a, t=Z(1+t_), r=1(1+s)
2 2 2 2

g=2Xoash ?=2Tt—1 s_%—l Te[-11] T e[-11] se[-1,7]

the eq. (4) can be written in the following form:

7(%.7) :L(ZJV }(f_s)*" (E[T.s.(%s) ]+ F[Tossit (%.5) JJds + F(R.7)+F(7) (5)

r(r)\2) 4
with boundary conditions:
B-LD=7,@), @D =7 @), -1<7 <l (©)
ﬁ(f,z‘)=u[b;"x+“+b T(l+t)} F®7)= f[b az.atb T(1+z)}

ﬁ[?,s,ﬁ(f,s)] (t —s)li( j o2u(x,s) - Eu(x, s):l [t s,u(x,s)] = (t_—s)]?[ﬁ()?,s)]

- b-—a_ a+b _ a+b
¢(x,r>=¢1(—“ += ) @( += j (1+7)
2 2
For the collocation methods in time, eq. (5) holds at the Jacobi collocation points
{1;} %, with the Jacobi weight functions o*/(t) = (1 - t)3 (1 + t)j on [-1, 1]:

m;)z;( j j(r =) M LI s (R )+ T s i (R s + f D+ (RE)  (7)

C(»\2
1 1+7, 7! _ g+l
r()U REREE I

We make the hnear transformation:

1+
s=5,(0)=
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Thus, we transfer the integral interval [-1, 7] to a fixed interval [-1, 1] e. g.:
1
W(E,E) = p, [(1=0)*(LT,us,(O)0[%.5,(0)]} + FA(T, o5, (O3, (0)]})d0+ F(%.7) + $(F.7)) (9)
-1
We first use v/(x) to approximate the function u(x, 7,):
M
u(x,0)~u" (x,0)=Yu’ (X)F,(7) (10)
j=0

where Fj(t) are the Lagrange interpolation polyhomials associated with collocation points

T
' Combining the Gauss quadrature formula and egs. (10) and (9) can be approximated:

ﬁf'(f)=ﬁ,-Z(l—@)(fﬁ’”[)‘c,s,(@)]#{ﬁM[f,s,-(@)]})w;””+f(f,t‘,->+¢7(f,t‘,.) (11)

where {6;}., is the set of the Jacobi-Gauss points corresponding to the weights {w;*’}on
(-1, 1].
For the Jacobi collocation methods in space, eq. (11) holds at the Legendre-Gauss

collocation points {x,},, use u, to approximate the function /(x,):

N N M

@ (%)~ D U/ (%), @(F 1)~y (7.0) = 3 3 i) H (F)F,(7)

i=0 i=0 j=0
where {H/(x)}Y, are the i th Lagrange interpolation polynomials associated with the Legendre-
Gauss points {x;}",. The discretized problem in space eq. (11), can be approximated:

L _ _ - =
7 = p, (1= 0)( L [%05,0) |+ Fliy [%o5,00 o + T ;) + 4Gt (12)
k=0

Then the full-discreted solution of eq. (13) is to seek u’(x, 7) such that «/ satisfies the
above collocation eq. (12) for 1 <i<N-land 0 << M.

Convergence analysis

In this section, we carry out the error estimations for the solution of the semi-discret-
ized and full-discretized problems. Now we devote to provide a convergence analysis for the
numerical scheme. The goal is to show that the rate of convergence is exponential.

Let u(x, 1) be the solution of the continuous problem eq. (5), and let:

M
w(xX,1) =) 0" (X)F, ()
m=0
be the time-discrete solution of eq. (11), for y and m >1. If u(x, ), uz(x, { ), and:
w (x,0)eH", ()
then for M sufficiently large:

o CM"> U (%) + M~ logMF" (%) || U, (%) + M logMF" (%) |- 1< —p < —%

0

CM"*"[logMU,(X)+M "> F"(%)], —% S-p< %— H (132)

CM"[U(®) + MU, (3)+ F' () -1 —u < !
< 2
r»r

CM "logM | U, (%) + MU, (¥)+ F*()_c)],—% <—pu< %— u (13b)
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for x € (0,1 — u), where C'is a constant independent of M.

EL% :Hﬁ(f’t_) - EM (EJ_) HLx 5 ELZ :HE(EJ_) - "_lM (fyt_) ||sz[ Y

P = s O,

U @) A (X, 1) |y + 110 (1) | + | (6,0) |

U, () =l u (X, 1) |y

oM

Using the boundary conditions:

+ | L_l)? (f7 t_) ‘ + | L_lﬁ (23 t_) |Hm7,M7

M
H™
o oMl

7(T) = j-M (. 0)dr+7,@), @' (®7) = [ 7 M)dﬂw

: - (14)
NAGRAG)
=& 2

(%) ; V7,-(f_)=l//[%(1+7)}, i=1,2

Consequently, u™(x, 1) satisfies the following collocation equations for 0 <; < M:

l/72(t_,)_l/71(t_,)

m;):_j}gy(nfj_)drwz(?j), E!(f,t_j):jf i (r,7)dz + 5 (15)
Since L < M and:
M
@ (x,y)= D u" (N)F, () € B())
m=0
we have:

jfl (1=0Y*L{7,,s,,u"[x,5,(0)]}d0 = iﬁ{?j o5, x5, (O) o

Subtracting eq. (9) from eq. (11), and eq. (14) from eq. (13):

u(x,1)—u’ (%) = %Gj Ij(r_j —5) iﬁ[g,s,ﬁ(x,s)] — LT, 5,0 (J?,s)]}ds + Ky (%, 1))
7 -1 X X
0(X,5)~i' (%) = j@(r,?j)dr—j@M(r,?j)dr

-1 X -1 X
o\ M= — _ - v, =
u (X, 1) —u; (x,tj)zj.uﬂ(f,tj)dr—ju" (7,t)dz
3 4

Ky(5.7) = p, Y Fle5, 00,155,007 = p, [ 1=0) .5, (00T [F.s, (01140 (16)

Using [9] (see p. 290, (5.4.38)) the definition of |-|zmn, and Lipschitz condition:
Ky E 1) ISCM ™ | F 75,0 K5O |y ()<

<CM™ (| F{Tos TS OW |y, + T =0 ||ml) 7

Multiplying by F(y) both sides of eq. (16) and summing from 0 to M for j:
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LA a7~ (7,1) = [} p(?)j T —s)* ({ﬁ[?, 5, 1%, )] LIT, 5,8 (¥, 5)]})+ K, (%.7)

L/ (3,0 - (3, 1) = I,/ {f . (r,0)dr - f e (T”_)df} (9
£ 3
where

Ky (%, 1) = ;K (%.T))
Let:
E() ()_C’t_) = E(fs t_) - I’7M (f’ t_)s E1 ()_Cs t_) = 17} (fa t_) - ﬁiM (fa t_)s Ez ()?9?) = 17,\'7 (fa t_) - Eg (fa t_)

It follows from eq. (18) that:

Eoy(f,t_):p(t_)j(_ )“L[T,5,E,(%.5) }ds+1< (X.7)+K, (%.7)+K, (.7)
EO(E,F)=JE1( )dr+K( )+ K, (3,7),E (%7 _£E2 r,1)dr+K, (3,7)+ K (%,7) (19)

K1) =i (%, 0)- I, u(%.7), K (x,7)=1," ”jE (r,7)dr— jE (z,7)r.

LE,(%,s)=(T s)[E(x )—-EE,(%,9) |, K,(X, 1) =u(X,0)~ I,/ "u(¥,7)
K, (X,1) =1, ”p(t)_[(t—s)”ﬁ(t s, E,)ds — p(t)j(t—s)ﬂﬁ(t s, E,)ds

K%, 1) =1,/ jEl(f,t Ydz — IEI(T, 7)dr
-1 -1
Note that LEy(x, ) = Ey(x, 1) — & Eo(x, 1), we have:

| Ey(x,1)|< CJ.(t_—S)”‘ [| E,(x,8) | +] E,(¥,9) [Jds+| Ko (X, D) | +] K, (¥, 7) [ +] K, (X, 7) |

-1

\E(xr>|<J|E(m>k1r+|K(xt>|+|1<<xt>| (20)

-1

EGEDI [|EED e+ K, G+ K ED)

which gives: :

|EEDISCIT-9)" | EFEs)|ds+ Y K ED]

i=0,1,4,6,7

Ko (x,0) =t (x,0)~ I,/ " (%,1) (21)

K,(x,7)=CI,}"™* j (T —5)" | E,(%,5) |ds — c] (7 —5)" |E, (X, s)ds
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Using the Gronwall inequality in [10] (see Lemma 7.1.1), we deduce:
I EED S Y IKED e JEEDI:, < Y |

i=0,1,4,6,7 i=0,1,4,6,7

Using L” and weighted L? error bounds, see [10] and eq. (9), from eq. (17):

1
PR
cm " max | FIE5 7T SO »
—%<—ﬂ<Q
[N AEADY I
CM™ logM( max .7-"{t ulx, s(@)]}j L+ IX,(x.7) o
i=1,4,6,7

1

—1<—u<—

a 2

CM"> ™" | U(X,T) |,y
1K, & D, < ‘-
1 L CMI*#*m lOgM | Z/_[()_C’ 7 ) |Hm)M
12-m | — — 7 1
— — M |uf(x5t)|Hm.Ma _1£_ﬂ<——
1K, (% D)l < 7 2
CM'"™“"log M |, (X,7)|,,...» otherwise
V2-m | — — & 1
— = M |ux7(x9t)|HmMy _1§_/J<——
HK()(x’t)HLwS of B 2
CM ™" 10g M |t (X,7) |50 » Otherwise
By [11], we get:

1K FDI|;  <CM ™ |(F,D)

Hmw

5_ sz o S CM’"’ | L_l)? (f, ZL_) |Hm:yr“ )

e, SCM I (D)
Finally, it follows from [10] (see p.153 and Lemma 3.5,), and [12], see eq. (9):

CM g M Il £, I, » ~1% <=k (0.1 p)
IKEDI<]

Uk 1 1
CM? NEC,) .., —Eﬁ—ﬂ<5—y,xe(0,l—,u)

NGO, AN =DM EyF8) | =Ty | E, o)l < CM ™ I E,F9) .

(22)

(23)

24

(25)

(26)

27)

(28)

Equations (23)-(25) and eq. (27) leads to eq. (13a). In a similar way, eqs. (26)-(28)

leads to eq. (13b).

Let uM(x, 1) be the time-discrete solution of eq. (11) and let u¥(x, 7) be the solution of
the full-discrete problem of eq. (12) with boundary conditions eq. (6). If #(x, 7), u"(x, t), and:

Y (x,7) e H") ()

for x and n > 1, then the following error estimation holds:
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1
_ _ CN¥*"logMV , —1<—pu<——
7" (7)) (ED)I|, < BT

1
CN**"M> "V, otherwise

|7 .0y @0, <Ly, =;291§][|5M @), +

@ (5.0, +

iy &), ] 29)
where C is independent of N and M. By subtracting eq. (11) from eq. (12):

w (x)-u <) C,
m=0

_ _N
Lu™(%)- LY u'H, (%)
n=0

_ 1
TOT)
Multiplying by H,(x) both sides of eq. (29) and summing from 0 to N for i, and noting

J

2 G- (30)

that:
_N _N _N
LY u!'H,(¥)e Py(X), then I,LY u"H, (X)=LY u/H,(¥), ityield that:
n=0 n=0 n=0

N M
L' (¥) - u/H(®)<).C,
i=0 m=0

I,Cu' (x)-L ﬁ u'H, (%) (31)
Let:
" (x)=u"(x)- iﬁini"(f), J,&X)=u'" (x)-I,u" (X), J,(x)=u"(x)-1,u" (X)

i=0
e@@ﬁd@hW@%ﬁW&@LM®=W@%iww@xM®=W@%mwm
i=0 i=0
Thus we have:
[ [SC(1J,X) | +],(X) |+, ]) (32)
Using L* and L? error bounds for the interpolation polynomials in [9]:
[l <en | ] <o ], < eve e

H" L

BN

I, <CN™

)

<CN™

J

<CN~|i’|

J

J2

171|

s

i
o u|

BN 2 BN

aM@J»@WzB=f@%ﬂ—iﬁﬂ@ﬂﬂ@h§k@@ﬂuﬂ=m%%@J)6%

Here, we have [11, 12]:
Il @) ~uy & Dl <€ max | e(X, D) (34)

_ 1
_ _ ClogM max-_ ., |e(x,t)], -1<—u<—-——
|7 @D - ED, <]y e [ €650 #°7 (35)
cm?” max; ., |e(X,7)|, otherwise
By using egs. (32)-(35) and previous inequality, we obtain eq. (29). Thus, the proof
is completed.
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Let @1(x7) be the solution of the continuous problem (5) and let #% (X, ¢ ) be the solu-
tion of the full-discrete problem eq. (12) with the initial condition (1) and boundary conditions
(). fa(x 1), i(x,1) and (X 1) € HEY , @ HyY o, for x and y with n, m > 1, then for M and N

sufficiently large, for x € (0, 1 — i), we have the following error estimations:

CM"> ™ (U, (%) + M log MF" (%)) + CN*"* " log MY,
“l<—p<——
1-pu—m —2 —1/2 * f— 3/4-n 1/2-
cM' (llogMUl(x)JrM F'(X))+CN" "My,

1
__S_ < ——
2= THSTH

lu(x,7)—uy (X,7)]|,. <

CM ™" [U,+ MU, + F'(X) [+ CN'W,;

—“1<—pu<—=
— =\ =M= T < 2 X (36)
””(x’t) e 50 <Y om logM [U, +M'™* U, + F'(X) |+ CN"",
1
— < = RN
7= U< B M

Numerical experiments
We consider the following fractional Klein-Gordon equation:
0u (x, Z)

D,’u(x,t) = P
X

—uz(x,t)+f(x,t), I<y<2
where

7

£ (x.1) z{m+t2n2}cos(nx)+t6 cos™ ()

with initial condition u(x, 0) = 0 and u,(x, 0) = 0. The exact solution is u(x, 0) = >cos(mx).

10 10°
= L(y=12) . L (y=12)
S 10 L2 (y=12) 2 10 . L (y=1.2)
w L (y=18) w L"(y=18)

10° 2 L (y=18) 107 " L7 (y=18)

10" 10

10° 10

10° 10

10 10°

10“2 3 4 5 6 7 8 9 10 1072 3 4 5 6 7 8 9 10

N M

Figure 1. The variation of the error with the increase of the collection points

As shown in fig. 1 shows, that the error has the exponential convergence due to the
variation of the error with (N, M) in the sense of the spaces || - ||, and || - [|:2.

Conclusion

In this work, the time-space spectral collocation method for time fractional Klein-Gor-
don equation was proposed. The equation holds at the Jacobi spectral collocation points in the
time and space direction and the full discrete form is obtained in detail. This method is easy
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to deal with the non-linear situations. The numerical solution with higher accuracy can be ob-
tained with fewer points.
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