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In this paper, a local fractional homotopy perturbation method is presented to 
solve the boundary and initial value problems of the local fractional Korteweg-de 
Vries equations with non-homogeneous term. In order to demonstrate the validity 
and reliability of the method, two types of the Korteweg-de Vries equations with 
non-homogeneous term are proposed. 
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Introduction 

 The Korteweg-de Vries (KdV) equations and its relatives are widely applied for the 
description of non-linear waves in many branches of physics and engineering, such as elec-
trodynamics, elastic media, traffic flow, fluid dynamics [1-7]. These equations are often too 
complicated to be solved exactly and even if an exact solution is obtained. The required calcu-
lations may be too complicated. A lot of research methods have been applied to derive the exact 
solutions of these equations, such as the homotopy analysis method [8], the variational iteration 
method [9], the functional variable method [10]. 

The local fractional derivative [11, 12] is the best method for describing the non-dif-
ferential problems defined on Cantor sets. In those papers of Yang et al. [13] they have applied 
the local fractional differential equations on the Cantor fractal sets to describe many natural 
phenomena in fractal-like media, such as the local fractional KdV equation, the local fraction-
al Tricomi equation [14], the local fractional heat conduction equation [15] and so on. Many 
methods have been developed to solve these local fractional differential equations, such as the 
local fractional variational iteration method [16], the Yang-Laplace transform method [17], the 
local fractional Fourier series method [18], the variational iteration transform method [19]and 
others [20-23]. 

Mathematical fundamentals

In this section, we introduce some mathematical preliminaries of the local fractional 
calculus theory in fractal space for our subsequent discussions [11, 12].
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Definition 1. Suppose that there is [12]:

	 0( ) ( )u x u x αε− < 	 (1)

with |x – x0|< δ , for ε, δ > 0 and ε, δ ∈ R, then u(x)
 
is called local fractional continuous at x = x0 

and it is denoted by lim
x→x0

u(x) = u(x0). 
Definition 2. Suppose that the function u(x) is satisfied the eq. (1) for x ∈ (a, b) it is 

called local fractional continuous on the interval (a, b): 
	 ( ) ( , )u x C a bα∈ 	 (2)

Definition 3. In fractal space, let u(x) ∈ Cα(a, b), the local fractional derivative of u(x) 
of order α at x = x0 is given [12]:

	 ( )( )

0
0

( ) 0
0 0

0

[ ( ) ( )]d ( )   D ( ) lim
d ( )x x x x x

u x u xu xu x u x
x x x

α
αα

α
α α= →

∆ −
= = =

−
	 (3)

where 

	 0 0[ ( ) ( )] (1 ) [ ( ) ( )]u x u x u x u xα α∆ − ≅ Γ + ∆ −

The local fractional derivative of high order and the local fractional partial derivative 
of high order are defined, respectively, in the following forms [11, 12]: 

	 ( ) ( )
 times

( ) ( ) D ...D ( )
k

k
x xu x u xα αα =


	 (4)

	 ( )
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k
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α α α
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α α α

∂ ∂ ∂
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∂ ∂ ∂



	 (5)

Definition 4. [11, 12] In fractal space, let u(x) ∈ Cα(a, b), the local fractional integral 
of u(x)

 
of order α in the interval [a, b] is defined:

 	
( )

1
( )

0 0

1 1   ( ) ( )(d ) lim ( )( )
1 (1 )

b j N

a b j jt ja

I u x u t t u t tα α α

α α

= −

∆ →
=

= = ∆
Γ + Γ + ∑∫ 	 (6)

where Δtj = tj+1– tj, Δt = max{Δt1, Δt2, Δtj,...} and [tj, tj+1], j = 0,...N – 1, t0 = a, tN = b, is a partition 
of the interval [a, b].

The local fractional homotopy perturbation method 

In this section, we shall present the process of the local fractional homotopy perturba-
tion method [24] to derive exact solutions of the local fractional KdV equations with non-ho-
mogeneous term. 

Firstly, we consider the following local fractional KdV equations with non-homoge-
neous term on fractal set, which is given in the following form:

	
( ) ( ) (3 ) ( , )t x xu uu u f x tα α αα β+ + =

	
(7)

where f(x, t) is a non-homogeneous term.
By using the homotopy perturbation method and according to eq. (7), we construct 

the following homotopy:

 	 ( ) ( ) ( ) ( )3 3
0(1 ) ( , ) 0x x t xp v u p v v vv f x tα α α αα α α β   − − + + + − =    	 (8)

where v = v (x, t, p). 
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This is:
 	 ( ) ( ) ( ) ( )3

0 0 ,x t xv u p u v vv f x tα α αα α β = − + + −  	 (9)

where p ∈ [0, 1] and where u0(x, t) is a preliminary approximation of u0(x, t). 
Applying the local fractional triple integral (3 )

0 ( )xI α
 on both sides of eq. (9), we ob-

tain:
 	 ( ) ( ) ( ) ( ) ( )3 3

0 0 0 0 ,x x t xv v I u p I u v vv f x tα α α αα α β = + − + + −   	 (10)

where v~(x, t) is derived from the initial condition.
Let us present the v(x, t, p) as the following:

 	 2
0 1 2

0
( , , ) ( , ) ( , ) ( , ) ( , ) ...k

k
k

v x t p v x t p v x t p v x t p v x tα α α
∞

=

= = + + +∑ 	 (11)

where v0 (x, t,) = v (x, t, 0) and 

 	 0

 1 ( , , )( , ) , ( 1)
(1 )

k

k pk

v x t pv x t k
k p

α

αα =

∂
= ≥
Γ + ∂  

Substituting eq. (11) into eq. (10) and comparing the coefficients of each powers of pα, 
that gives the following system of algebraic equation:

	 ( ) ( ) ( ) ( ) ( ) ( )3 3
0 0 0 0 1, , , , 2,3,...,x k x k kv x t v I u v x t I R v kα α

−= + = − =   	 (12)

where

	 [ ] [ ]
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 ∂ + =
Γ + − ∂

Obviously, if vk(x, t) = 0, (k ≥ 1) then:

	 1 2( , ) ( , ) ... ( , ) 0k k k nv x t v x t v x t+ + += = = =

Thence, we get the exact solution of eq. (7):

	 0 1
0

( , ) ( , ,1) ( , , ) ( , ) ( , ) ( , ) ... ( , )
k

i
i k

i
u x t v x t v x t p v x t p v x t v x t v x tα

=

= = = = + + +∑
In this paper, for the sake of simplicity, we only discuss eq. (7) under the condition of 

k = 1. Then, we get the exact solution of eq. (7):

 	 ( ) ( ) ( ) ( )3
0 0 0, , ,1 , xu x t v x t v x t v I uα= = = + 	 (13)

Obviously, in using this method, how to choose u0 = (x, t), which makes v1(x, t) = 
0,

 
is critical to get the exact solution of eq. (7). We shall discuss this in more detail in next 

section.

Two illustrative examples

To demonstrate the effectiveness of the method, three examples of local fractional 
Korteweg-de Vries equations with non-homogeneous term are presented.

Example 1. Consider the following local fractional KdV equation with non-homoge-
neous term:
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 	 ( ) ( ) ( )

( ) ( ) ( )3 2
1t x x
xu uu u E t E t
α

α α α α α
α αα

 + + = + Γ +
	 (14)

with initial conditions:
	 ( ) ( ) ( ) ( ) ( ) ( )20, 0, 0, , 0, 0x xu t u t E t u tα αα

α= = =

According to the homotopy perturbation method, we can construct: 
	 ( ) ( ) ( ) ( ) ( )3

0 0, ,x t xv u x t p u x t v vvα α αα  = − + + 
	 (15)

where u0(x, t) = xαEα(tα) / Γ(1+α) is an initial value. 
Applying the inverse operator (3 )

0 ( )xI α
 on both sides of eq. (15), we obtain:

	 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3
0 0 0 0, ,

1
  x x t x

xv x t p E t I u p I u v vv
α

α α α αα α
αα

 = + − + + Γ +
	  (16)

Substituting eq. (11) into eq. (16), collecting the same powers of pα, and equating each 
coefficient od pnα  to zero yields:
	 ( )3

0 0 0( , ) ( ) ( )
(1 ) x

xv x t E t I u
α

αα
αα

= +
Γ +

	 (17)

and

 	

( )

( ) ( ) ( )

3 ( ) ( )
1 0 0 0, 0 0,

3
0 1, 1 1,

( , ) ( ) (2 )
(1 ) (1 )

...

( , )

x t t

n x n t n n x

x xv x t I u v v v E t E t

v x t I v v v

α α
α α α α α

α α

α α α

α α

− − −

 
= − + + − − Γ + Γ + 

 = − +  	 (18)

Now, if we solve these eq. (18) in such a way that v1(x, t) = 0,then we yield:

 	 2 3( , ) ( , ) ... ( , ) 0nv x t v x t v x t= = = = 	 (19)

Therefore, the exact solution of eq. (14) can be obtained:

 	 ( ) ( ) ( ) ( ) ( ) ( ) ( )3
0 0 0, , ,1 ,

1 x
xu x t v x t v x t E t I u
α

αα
αα

= = = +
Γ +

	 (20)

We suppose:

	
( ) ( ) ( ) ( )
3

0 0
3 1

n

x n
n

xI u a t
n

α
α

α

∞

=

=
Γ +∑ 	 (21)

	 ( ) ( ) ( ) ( )0 1 20, , 0
1
xa t a t a t
α

α
= = =

Γ +
	 (22)

where an (t), (n ≥ 3) are all functions to be determined.
Substituting eq. (22) into eq. (21) and then comparing the coefficient of like xnα of the 

transformed equation, we can derive:

	 ( ) ( ) ( ) ( ) ( ) 4
1 1

1, 2 ....
1 4

v x t a t E t E t xα α α
α αα

 = − − − − − Γ +
	 (23)

By imposing the assumptions v1(x, t) = 0, we can obtain:

	 3 ( ) ... ( ) 0na t a t= = =  	 (24)

Thus, the exact solution of the eq. (14 ):
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	 ( )
( )

( ),
1
xu x t E t
a

a
aa

= -
G +

	 (25)

Example 2. Consider the following local fractional KdV equation with non-homoge-
neous term, which is given in the following form:

 	 ( ) ( ) ( ) ( )3 2 2t x xu uu u E x t αα α α
α+ + = − 	 (26)

with the following initial conditions:
	 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )20, , 0, , 0,x xu t E t u t E t u t E tα αα α α

α α α= − = − = −

According to the homotopy perturbation method, we can construct: 

 	 ( ) ( ) ( ) ( ) ( ) ( )3
0 0, , 2 2x t xv u x t p u x t v vv E x t αα α αα

α
 = − + + − − 

 	 (27)

where u0(x, t) is an initial value. 
Applying the inverse operator (3 )

0 ( )xI α
 on both sides of eq. (27), we obtain:

	

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( ) ( )

2
3

0 0

3
0 0

, , 1
1 1 2

, 2 2
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x t x

x xv x t p E t I u

p I u x t v vv E x t

α α
αα

α

αα α αα
α

α α
 

= − + + + − 
Γ + Γ +  

 − + + − −  	 (28)

Substituting eq. (11) into eq. (28), collecting the same powers of pα, and equating each 
coefficient of pnα to zero yields:

 	 ( ) ( ) ( ) ( )
( ) ( )

2
3

0 0 0, 1
1 1 2 x
x xv x t E t I u
α α

αα
α α α

 
= − + + + 

Γ + Γ +  
 	 (29)

and

	

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

3
1 0 0 0, 0 0,

3
0 1, 1 1,

, 2 2

...

,

x t x

n x n t n n x

v x t I u v v v E x t

v x t I v v v

αα α α
α

α α α
− − −

 = − + + − − 

= − + 	 (30)

Now, if we solve eq. (30) in such a way that v1(x, t) = 0, then we yield:

 	 ( ) ( )2 3, , ... 0v x t v x t= = = 	 (31)

Therefore, the exact solution of eq. (26) may be obtained: 
	 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 3

0 0 0 0 0, , 0, 0, 0,x x x x xu x t v x t u t I u t I u t I uα α α α α= = + + + 	 (32)

We suppose:

	 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

3
0 0 0 1 2

3
, 1, ,

1 1 1 2

n

x n
n

x x xI u a t a t a t a t
n

α α α
α

α α α

∞

=

= = = =
Γ + Γ + Γ +∑ 	 (33)

where an(t), (n ≥ 3) are all functions to be determined.
Substituting eq. (33) and 

	 ( ) ( ) ( )0

22 2 2
1

n n

n

xE x t E t
n

α α
α α

α α α

∞

=

− = −
Γ +∑
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into eq. (32) and then comparing the coefficient of like pα of the transformed equation, we can 
deduce:

 	

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

3

1 0 0 0 1

4
2

1 1 0 2

, 2
1 3

2 2
1 4

....

xv x t a t a t a t a t E t

x a t a t a t a t a t E t

α
α α

α

α
α α

α

α

α

 = − + + − − − Γ +

 − + + + − − Γ +
	 (34)

where an(t) are all functions to be determine.
 By imposing the following assumptions v1(x, t) = 0, we can obtain:

	 ( ) ( ) ( ) ( )0 1 ,..., na t a t a t E tαα= = = − 	 (35)

Thus, the exact solution of the eq. (26):

	 ( ) ( ) ( ),u x t E x E tα α
α α= −

	
(36)

Conclusion

In this work, a local fractional homotopy perturbation method is introduced for solv-
ing the local fractional Korteweg-de Vries equation with non-homogeneous term in details. The 
test examples are showed that the suggested method can be regarded as a simple and efficient 
tool for computing local fractional Korteweg-de Vries equation with non-homogeneous term. 
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