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This paper is aimed to solve non-linear local fractional evolution equations in flu-
ids by extending the operator method proposed by Zenonas Navickas [15]. Firstly, 
we give the definitions of the generalized operator of local fractional differentia-
tion and the multiplicative local fractional operator. Secondly, some properties of 
the defined operators are proved. Thirdly, a solution in the form of operator repre-
sentation of a local fractional ODE is obtained by the extended operator method. 
Finally, with the help of the obtained solution in the form of operator representa-
tion and the travelling-wave transformations, the local fractional Kadomtsev-Pe- 
tviashvili (KP) equation and the fractional Benjamin-Bona-Mahoney (BBM) eq- 
uation are solved. It is shown that the extended operator method can be used for  
solving some other non-linear local fractional evolution equations in fluids.
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Introduction

The local fractional calculus [1] developed in recent years provides a useful mathe-
matical tool for describing the complexity and non-differentiability of real-world problems such 
as vibrating string, heat transfer, and fluid mechanics. It is worth mentioning that Yang et al. 
[1-9] meaningful contributions are pioneering for the sound developments of the local fraction-
al calculus. The local fractional calculus has many graceful properties, benefiting from which 
some existing methods originally proposed for non-linear differential equations with integer 
orders, for example the variational iteration approach [10, 11], have successfully been extended 
to some local fractional differential equations [12-14]. 

In 2002, Navickas proposed the operator method [15] to represent solutions of 
non-linear differential equations by linear operators. For such a purpose, Navickas [15] defined 
the linear generalized operator and the multiplicative operator, and then proved some properties 
of these two operators. As far as we know this operator method has not been extended to the 
differential equations of fractional orders. In this paper, we shall extend the operator method to 
construct solutions in the form of operator representation of non-linear local fractional differ-
ential equations. 
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Definitions

Definition 1. The local fractional derivative is defined [1]:
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where 0 1α< ≤  and 0 0[ ( ) ( )] (1 )[ ( ) ( )]α φ µ φ µ α φ µ φ µ∆ − ≅ Γ + −  with the Euler’s Gamma func-
tion:
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Definition 2. Suppose ( ) [ , ]C a bαφ µ ∈ , then the local fractional integral of order 
(0 1)α α< ≤  is defined [1]:
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where 1k k kµ µ µ+∆ = −  with 0 1 1Na bµ µ µ −= < < < = .
Definition 3. If we let ( , , )A A x θ ϑ=  and ( , , )B B x θ ϑ=  be two polynomial of variables 

x , θ  and ϑ, then the linear operator:

	 ( ) ( ) ( )D D DA Bα α α
θϑ θ ϑ= + 	 (4)

is called a generalized operator of local fractional differentiation. 
Definition 4. The linear operator:
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is called a multiplicative local fractional operator, here ( ) ( ) 0
0( ) 1xI Dα α

θϑ =  is the identity op-
erator. 

Properties

Properties 1. The local fractional operator of differentiation has some properties [1]:
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where c, l , p, q, and h are all constants, and
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Properties 2. The local fractional operator of integration has some properties [1]:
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Properties 3. If let [( 1) ]D ( ) ( , )k C a bα
µ αφ µ+ ∈ , then ( )φ µ  can be expanded as [1]:
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Properties 4. The generalized operator of local fractional differentiation has properties:
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Proof. We prove the relation (18) for 1n = , the other ones can be proved by the similar 
way. In view of the definition (4), we have:
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Properties 5. The multiplicative local fractional operator has properties:
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It is easy to see from eq. (26) that:
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Thus, from eqs. (27), and (29)-(30) we have ( , , ) ( , , )z x w xθ ϑ θ ϑ=  which is namely the 
relation (22).

For the first relation in eq. (24), a direct computation shows that:

	 ( ) ( ) ( 1)(1 )(D )
(1 ) [1 ( 1) ]

n n n
v

nG v v x v
n

α α α α α αα
α α

−Γ +
= + +

Γ + Γ + −
	

	 ( 2) ( 3)(1 ) (1 )
(1 2 ) [1 ( 2) ] (1 3 ) [1 ( 3) ]

n nn nx v x v
n n

α α α αα α
α α α α

− −Γ + Γ +
+ + +
Γ + Γ + − Γ + Γ + −

 	

	 ( 1) ( )

0

(1 ) ( )
[1 ( 1) ] (1 )

n n k n k n

k

nn x v x x v x v
kn

α α α α α ααα
αα α

+∞
− −

=

 Γ +
+ + = = + Γ + − Γ +  

∑ 	 (31)

Similarly, for the second relation in eq. (24), we have:
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to eq. (4), then we have:
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Proof. As an example, we prove the relation (34). In view of eqs. (4) and (33), we have:
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Properties 6. If let:
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Proof. We can see that the relation (38) is obvious. The proof of the relation (39) is 
similar to that of the relation (22) and we omit it here for simplification. 

Theorem

Theorem 1. If a local fractional ODE is given by:  
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where ( , , )P x θ ϑ  is a polynomial of variables x, θ , and ϑ , then eq. (40) has a solution of the 
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and then arrive at:
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	 (2 ) ( )D ( , , , ) [ , ( , , , ),D ( , , , )]x xz x v v P x z x v v z x v vα αθ ϑ θ ϑ θ ϑ− = − − 	 (45)
Thus, from eqs. (17) and (45) we obtain:
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Applications

Example 1. Application to the fractional KP equation:
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Example 2. Application to the fractional BBM equation:
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and using Theorem 1, then we obtain a solution of operator representation:
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Conclusion

In summary, the extended operator method has been established for constructing 
solutions of operator representation of non-linear local fractional evolution equations in fluids. 
When the fractional-order tends to 1, the extended operator method, the generalized operator of 
local fractional differentiation (4), the multiplicative local fractional operator (5), the properties 
(17)-(19), (21)-(24), and (34)-(35), and the obtained solution (46) degenerates into those of 
Navickas’ [15]. To the best of our knowledge, solutions (52) and (58) of the local fractional KP 
and BBM equations are novel. 
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Nomenclature
a, b	 –	 real numbers, [–]
dα/dαx	 –	 first local fractional derivative [–] 
t	 –	 time co-ordinate, [s]

Greek symbols

α	 –	 fractional order, [–]
x, y	 –	 space co-ordinates, [m]
v, μ, θ, ϑ	–	 space co-ordinates, [m]
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