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In this article, the barycentric interpolation collocation methods is proposed for 
solving a class of non-linear advection-reaction-diffusion system. Compared with 
other methods, the numerical experiment shows the barycentric interpolation col-
location method is a high precision method to solve the advection- reaction-diffu-
sion system.
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Introduction  

The treatise is devoted to the numerical solution of a class of non-linear advection-re-
action-diffusion system. In this paper, the general expression of such system: 
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where a1 and a2 represent the of the transport medium, such as water or air, and both d1 > 0 and 
d1 > 0 are diffusion coefficients, which include the parametrizations of the turbulence.

The advection-reaction-diffusion system has wide applications in thermal science, 
chemical and mechanics. There are some valuable efforts that focus on finding the analytical 
and numerical methods for solving the advection-reaction-diffusion system. These methods 
include B-spline method [1, 2] the variational iteration method [3], homotopy perturbation 
method [4], integral transform [5], and so on [6, 7]. The barycentric interpolation collocation 
method [8-13] is a high precision method. In this paper, we mainly employ the barycentric 
Lagrange barycentric interpolation collocation method to solve the systems (1).
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Description of the numerical method

We give two initial functions u0, v0,  and construct following linear iterative format:
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Next, we use barycentric interpolation collocation method to solve eq. (3).
Let a ≤ x1< x2 < ... < xM ≤ b, 0 ≤ t1 < t2 < ...< tN ≤ T, respectively, These nodes can gen-

erate 2-D nodes on the rectangular are a Ω = [a, b] × [0, T], as:

 {(xi, tj), i = 1, 2,..., M; j = 1, 2, ...N}

The barycenter interpolation form of function u(x, t) can be expressed: 
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According to eq. (4), the partial derivative of l + k order of function u(x, t) at the 
nodes (xp, tq) can be written:
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The function values of the eq. (4) and the eq. (5) at the node form column vectors u, 
u(l, k) and they are:
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Therefore, the eq. (5) can be expressed in the following matrix form:
  ( , ) ( , )l k l ku D u=    (6)

in the eq. (6), D(l, k) = C(l) ⊗ D(k) is the Kronecker product of matrix C(l) and D(k), and it also called 
l + k order partial differential matrix at nodes{(xi, tj), i = 1, 2,..., M, j = 1, 2, ...,N}, C(l)

and D(k) are l, k order differential matrices formed by barycenter interpolation at node interval  
[a, b] and interval [0, T], respectively. Let:
 (0) (0),M ND I D I= =   (7)

where IM and IN are M order unit matrix and N order unit matrix, respectively .
So, the discrete form of the eq. (3) can be written:
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So, eq. (8) can be written in following partitioned matrix form: 
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In this paper, we use displacement method to impose the initial boundary conditions. 
The detailed procedure see [8-10]. In calculation, we choose the chebyshev nodes. In the follow-
ing numerical experiments, we set a calculation accuracy ε = 10–15, if |un(x, t) – un–1(x, t)| < ε then 
the iteration stops.

Numerical experiments 

Experiment 1. We consider the following dvection-reaction-diffusion problem [6]:
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here the initial and boundary conditions are: 
 ( ),0 sin , ( ,0) cos , [0,4 ]u x x v x x x= = ∈ π  (11) 

 (0, ) (4 , ) , (0, ) (4 , ) 1, [0,1]u t u t t v t v t t t= π = = π = + ∈  (12)

The  exact solution of the equations is given by   u(x, t) = t + sin(x), v(x, t) = t + cos(x).
We select d1 = 0.5, d2 = 0.1, a1 = 0.5, a2 = 0.1. Numerical results are showed in figs. 1-6 and tabs. 
1-3. In tab. 1, comparing the calculation time and error between the present method and other 
methods [6] under different nodes, we can find that the present method has the least calculation 
time and the least error. Tables 2 and 3 show the absolute errors in different nodes. As can be 
seen from the tabs. 2 and 3, with the increase of nodes, the absolute error is also decreasing. 
Figures 1-6 are numerical solutions and absolute errors in different nodes. It can be seen that the 
absolute error is very small. Obviously, our method is very suitable for solving such problems.
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Figure 1. Numerical solutions obtained by the present method for Experiment 1 with M = 40, N = 20
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Figure 2. (a) Absolute errors of v and (b) comparisons between numerical and exact solutions  
of v for Experiment 1 with M = 40, N = 20 
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Figure 3. Numerical solutions for Experiment 1 with M = 20, N = 20 
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Figure 4. Absolute errors for Experiment 1 with M = 20, N = 20

Table 1. Comparison of L∞ error norm for Experiment 1
Method M CPU time L∞ error

Present method 20 6.9844  1.3107-7
IMEX-TF [6] 20 114.551534 0.000006

IMEX-class [6] 20 7.254047 0.103574
Present method 40 34.1141 2.5390-12
IMEX-class [6] 40 78.499703 0.025453
IMEX-class [6] 80 29.452989 0.006355
IMEX-class [6] 160 132.944052 0.001592
IMEX-class [6] 320 1627.527233 0.000398
IMEX-class [6] 640 14774.495908 0.000099
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Figure 6. Comparison of absolute errors for Experiment 1

Table 2. Absolute errors for Experiment 1 with M = 20, N = 20 

u(x, t) Numerical 
solution v

Exact  
solution v

Absolute  
error

Numerical  
solution u

Exact  
solution u

Absolute
error

(0.35, 0.002) 0.0062 0.0062 0.0035e-10 0.4218 0.4218 0.0024e-9
(0.27, 0.003) 0.0245 0.0245 0.0215e-10 0.5000 0.5000 0.0114e-9
(1.32, 0.012) 0.0545 0.0545 0.0310e-10 0.5782 0.5782 0.1023e-9
(2.78, 0.034) 0.0955 0.0955 0.0445e-10 0.6545 0.6545 0.1425e-9
(3.24, 0.523) 0.1464 0.1464 0.1021e-10 0.7270 0.7270 0.1573e-9
(5.48, 0.598) 0.2061 0.2061 0.2017e-10 0.7939 0.7939 0.2347e-9
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Figure 5. Numerical solutions and absolute errors for Experiment 1 with M = 40, N = 40 
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Table 3. Absolute errors for Experiment 1 with M = 40, N = 40 

u(x, t) Numerical 
solution v

Exact 
solution v

Absolute 
error

Numerical 
solution u

Exact 
solution u

Absolute 
error

(3.18,0.001) 0.0015 0.0015 0.0023e-12 0.1753 0.1753 0.4201e-12
(2.97,0.014) 0.0062 0.0062 0.0134e-12 0.2061 0.2061 0.5137e-12
(6.23,0.028) 0.0138 0.0138 0.0223e-12 0.2388 0.2388 0.5328e-12
(7.59,0.049) 0.0245 0.0245 0.1543e-12 0.3087 0.3087 0.6217e-12
(8.90,0.301) 0.0381 0.0381 0.2321e-12 0.3455 0.3455 0.6357e-12
(8.95,0.312) 0.0737 0.0737 0.3861e-12 0.3833 0.3833 0.7211e-12

Experiment 2. Experiment 1 is joined with the following initial conditions and Dir-
ichlet boundary conditions: 
 ( ) 5,0 sin , ( ,0) cos , 0,

2
u x x v x x x  = = ∈ π  

 

 5 5(0, ) , , 1, (0, ) 1, , , [0,1]
2 2

u t t u t t v t t v t t t   = π = + = + π = ∈   
   

The exact solution is given by u = t + sinx, v = t + cosx.  We take d1 = 0.5, d2 = 0.1,  
 a1 = 0.5, and a2 = 0.1.

From the figs. 7 and 8 and tab. 4, it can be seen that when the number of nodes is in-
creased, the absolute error tends to be stable and convergence rapidly, which indicates that the 
present method has good stability and convergence. It can be seen from Experiments 1 and 2 
that when spatial x selects different ranges, the influence of numerical solutions is small. With 
different spatial values, when the number of nodes is greater, the absolute error is smaller.
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Figure 7.  Numerical solutions and absolute errors for Experiment 2 with M = 20, N = 20 
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Figure 8. Numerical solutions and absolute errors for Experiment 2 with M = 40, N = 40

Table 4. Absolute errors for Experiment 2 with M = 40, N = 40 

u(x, t) Numerical  
solution v 

Exact  
solution v 

Absolute  
error

Numerical 
solution v 

Exact  
solution u 

Absolute  
error

(0.21,0.001) 1.0222 1.0222 0.0007e-12 0.7256 0.7256 0.1034e-12
(1.34,0.018) 1.0711 1.0711 0.1015e-12 0.9756 0.9756 0.1124e-12
(2.18,0.003) 1.1216 1.1216 0.2037e-12 1.4756 1.4756 0.2157e-12
(0.17,0.508) 1.1733 1.1733 1.3009e-12 1.5971 1.5971 0.3210e-12
(2.10,0.019) 1.2256 1.2256 1.3472e-12 1.6301 1.6301 0.3789e-12
(2.55,0.149) 1.2778 1.2778 2.0097e-12 1.7146 1.7146 0.4321e-12

Experiment 3. We consider the following system having time-dependent model 
parameters and a non-linear reaction term [14]:
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with the following initial and periodic boundary condition: 

 ( ),0 sin 2 , ( ,0) cos 2 , [0,4 ]u x x v x x x= − = − ∈ π  
 (0, ) (4 , ), (0, ) 1 (4 , ) , [0,1]u t t u t v t t v t t t= = π = − = π = ∈

The exact solution is u = t – sin2x, v = t – cos2x. The numerical solution and the ab-
solute error diagram of Experiment 3 are given in fig. 9, respectively. As can be seen from the  
fig. 9,  the method can be used to obtain a smaller absolute error.
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Figure 9. Numerical solutions and absolute errors for Experiment 3 with M = 50, N = 50 

Conclusion

In the present work, a class of advection-reaction-diffusion systems have solved by 
using barycentric interpolation collocation method. The numerical experiments show that the 
algorithm is high accuracy. We will apply this approach to more areas in the future.
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