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By using a Lie algebra A1, an isospectral Lax pair is introduced from which a gen-
eralized Giachetti-Johnson hierarchy is generated, which reduce to the coupled 
KdV-MKdV equation, furthermore, the algebro-geometric solutions of the coupled 
KdV-MKdV equation are constructed in terms of Riemann theta functions.
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Introduction 

In recent years, a family of methods were developed to find the exact solutions for the 
linear and non-linear PDE. Among them, there are adomian decomposition method [1], trav-
eling wave transformation method [2, 3], Riccati equation method [4] and algebro-geometric 
method [5-7]. The mathematical model of shallow water waves was rediscovered by Korteweg 
and de Vries [8], which is commonly known as KdV equation, many physical quantities of KdV 
equation and MKdV equation have been discussed later [9-11]. In this paper, we first use a Lie 
algebra A1 to obtain the generalized Giachetti-Johnson (GGJ) hierarchy, which reduce to the 
coupled KdV-MKdV equation, Then in terms of Riemann theta functions, the algebro-geomet-
ric solutions of the coupled KdV-MKdV equation are constructed.

The GGJ hierarchy and coupled KdV-MKdV equation

The Lie algebra A1 has a basis [12, 13]:
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Note:
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Set V(n) = V(n)
+  – ane1(0), then Ut – V(n)

+  + [U,V (n)] leads to the GGJ hierarchy:
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When taking n = 3, s = 0 in eq. (3), we have the coupled KdV-MKdV equation: 
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Algebro-geometric solutions of  
the coupled KdV-MKdV equation 

We introduce the Lenard gradient sequence {Sj}∞
j=0.
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Let X = (X1, X2)T and Y = (Y1, Y2)T be two basic solutions of spectral problems:
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then:
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satisfies the Lax equation:
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which implies that det W is a constant independent of x and tm. From eq. (8), we get:
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Set β0 = 1 in eq. (12), from eqs. (5) and (12), we have:
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By comparing the coefficients of λN−1, λN−2 and combining eqs. (11) and (13), we have:
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Thus, we get:
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which gives rise to:
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then (u1, u2) determined by eq. (14) is a solution of eq. (4).
We consider the hyper-elliptic Riemann surface:
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for a fixed point p0, we introduce the Abel-Jacobi co-ordinate:
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In a similar way, we obtain from (20)- (22):
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Substituting eq. (24) into eq. (23), we have: 

 ( ) ( ) ( ) ( )1 1 1 ( ) 1 ( ) 1 1 ( ) 2d 1ln ( 1) ln ( 1)
d 2 2

s m m s m
m x s m s x s

zF z z F z z
z

α θ ο θ α θ ο− − − − − −= − ∂ + = + − ∂ +

and
 ( ) 1 1 ( )1Re d ln ( 1) ln , 1,2, 1,2

2s

s m
m x ss F s mλ λ λ α θ− −

=∞ = − ∂ = =   (25)

where 
 (1) (2)

0 1 0 1( ), ( )s s s sx t x tθ θ θ θ η= Ω +Ω + π = −Ω −Ω +

From eq. (23), we have:

 
(1) (2)

1 12 1
(1) (2)

1 11 2

1 1ln , ln
2 2

N N

j x j x
j j

I Iθ θ
µ α υ α

θ θ
− −

= =

= + ∂ = + ∂∑ ∑  (26)

Substituting eq. (26) into eq. (14), we obtain the algebro-geometric solutions of the 
coupled KdV-MKdV eq. (4):
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Nomenclature
t – time, [s] 
x – space, [m] 
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