THE GENERALIZED GIACHETTI-JOHNSON HIERARCHY AND ALGEBRO-GEOMETRIC SOLUTIONS OF THE COUPLED KdV-MKdV EQUATION

by

Chao YUE ${ }^{a^{*}}$, Tiecheng XIA ${ }^{b}$, Guijuan LIU a, Qiang LU a, and Ning ZHANG ${ }^{c}$
${ }^{\text {a }}$ College of Medical Information Engineering,
Shandong First Medical University \& Shandong Academy of Medical Sciences, Taian, China
${ }^{\text {b }}$ Department of Mathematics, Shanghai University, Shanghai, China
${ }^{\text {c }}$ Department of Basical Courses, Shandong University of Science and Technology, Taian, China

Original scientific paper
https://doi.org/10.2298/TSCI180719257Y
By using a Lie algebra A_{1}, an isospectral Lax pair is introduced from which a generalized Giachetti-Johnson hierarchy is generated, which reduce to the coupled KdV-MKdV equation, furthermore, the algebro-geometric solutions of the coupled KdV-MKdV equation are constructed in terms of Riemann theta functions.
Key words: algebro-geometric solution, Riemann theta function,
coupled KdV-MKdV equation

Introduction

In recent years, a family of methods were developed to find the exact solutions for the linear and non-linear PDE. Among them, there are adomian decomposition method [1], traveling wave transformation method [2, 3], Riccati equation method [4] and algebro-geometric method [5-7]. The mathematical model of shallow water waves was rediscovered by Korteweg and de Vries [8], which is commonly known as KdV equation, many physical quantities of KdV equation and MKdV equation have been discussed later [9-11]. In this paper, we first use a Lie algebra A_{1} to obtain the generalized Giachetti-Johnson (GGJ) hierarchy, which reduce to the coupled KdV-MKdV equation, Then in terms of Riemann theta functions, the algebro-geometric solutions of the coupled KdV-MKdV equation are constructed.

The GGJ hierarchy and coupled KdV-MKdV equation

The Lie algebra A_{1} has a basis [12, 13]:

$$
e_{1}=\left(\begin{array}{cc}
1 & 0 \tag{1}\\
0 & -1
\end{array}\right), e_{2}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), e_{3}=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left[e_{1}, e_{2}\right]=2 e_{2},\left[e_{1}, e_{3}\right]=-2 e_{3},\left[e_{2}, e_{3}\right]=e_{1}
$$

Consider the isospectral problem:

$$
\begin{gather*}
\psi_{x}=U_{\psi}, U=(\alpha \lambda+s) e_{1}(0)+u_{1} e_{2}(0)+\left(\alpha_{1}+u_{2}\right) e_{3}(0), \tag{2}\\
\psi_{t}=V_{\psi}, V=\sum_{m \geq 0}\left[a_{m} e_{1}(-m)+b_{m} e_{2}(-m)+c_{m} e_{3}(-m)\right]
\end{gather*}
$$

[^0]Note:

$$
\begin{aligned}
& V_{+}^{(n)}=\sum_{m=0}^{n}\left[a_{m} e_{1}(n-m)+b_{m} e_{2}(n-m)+c_{m} e_{3}(n-m)\right], \\
& -V_{+x}^{(n)}+\left[U, V_{+}^{(n)}\right]=-2 \alpha b_{n+1} e_{2}(0)+2 \alpha c_{n+1} e_{3}(0)
\end{aligned}
$$

Set $V^{(n)}=V_{+}^{(n)}-a_{n} e_{1}(0)$, then $U_{t}-V_{+}^{(n)}+\left[U, V^{(n)}\right]$ leads to the GGJ hierarchy:

$$
u_{t_{n}}=\left(\begin{array}{c}
u_{1} \tag{3}\\
u_{2} \\
s
\end{array}\right)_{t_{n}}=\left(\begin{array}{ccc}
0 & \partial-2 s & 0 \\
\partial+2 s & 0 & 0 \\
0 & 0 & -\frac{1}{2} \partial
\end{array}\right)\left(\begin{array}{c}
c_{n} \\
b_{n} \\
2 a_{n}
\end{array}\right)=J_{1} P_{n}
$$

When taking $n=3, s=0$ in eq. (3), we have the coupled KdV-MKdV equation:

$$
\begin{align*}
& \left.u_{1 t_{3}}=\frac{1}{4} \alpha^{-3}\left[u_{1 x x x}-4 u_{1}\left(\alpha_{1}+u_{2}\right) u_{1 x}-2 u_{1}^{2} u_{2 x}\right)\right], u_{2 t_{3}}= \\
& \left.=\frac{1}{4} \alpha^{-3}\left[u_{2 x x x}-4 u_{1}\left(\alpha_{1}+u_{2}\right) u_{2 x}-2\left(\alpha_{1}+u_{2}\right)^{2} u_{1 x}\right)\right] \tag{4}
\end{align*}
$$

Algebro-geometric solutions of the coupled KdV-MKdV equation

We introduce the Lenard gradient sequence $\left\{S_{j}\right\}_{j=0}^{\infty}$.

$$
\begin{gather*}
K S_{j}=J S_{j+1}, S_{0}=(0,0,1)^{T} \tag{5}\\
K=\left(\begin{array}{ccc}
0 & \partial & 2 u_{1} \\
-\partial & 0 & 2\left(\alpha_{1}+u_{2}\right) \\
-u_{1} & \alpha_{1}+u_{2} & \partial
\end{array}\right), J=\left(\begin{array}{ccc}
0 & 2 \alpha & 0 \\
2 \alpha & 0 & 0 \\
-u_{1} & \alpha_{1}+u_{2} & \partial
\end{array}\right)
\end{gather*}
$$

Let $X=\left(X_{1}, X_{2}\right)^{T}$ and $Y=\left(Y_{1}, Y_{2}\right)^{T}$ be two basic solutions of spectral problems:

$$
\begin{gather*}
\Phi_{x}=U \Phi, U=\left(\begin{array}{cc}
\alpha \lambda & u_{1} \\
\alpha_{1}+u_{2} & -\alpha \lambda
\end{array}\right), \Phi_{t_{m}}=V^{(m)} \Phi, V^{(m)}=\left(\begin{array}{cc}
A^{(m)} & B^{(m)} \\
C^{(m)} & -A^{(m)}
\end{array}\right) \tag{6}\\
A^{(m)}=-a_{m}+\sum_{j=0}^{m} a_{j} \lambda^{m-j}, B^{(m)}=\sum_{j=0}^{m} b_{j} \lambda^{m-j}, C^{(m)}=\sum_{j=0}^{m} c_{j} \lambda^{m-j} \tag{7}
\end{gather*}
$$

then:

$$
W=\frac{1}{2}\left(X Y^{T}+Y X^{T}\right)\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)=\left(\begin{array}{cc}
\hat{g} & \hat{f} \\
\hat{h} & -\hat{g}
\end{array}\right)
$$

satisfies the Lax equation:

$$
\begin{equation*}
W_{x}=[U, W], W_{t_{m}}=\left[V^{(m)}, W\right] \tag{8}
\end{equation*}
$$

which implies that det W is a constant independent of x and t_{m}. From eq. (8), we get:

$$
\begin{gather*}
\hat{g}_{x}=u_{1} \hat{h}-\left(\alpha_{1}+u_{2}\right) \hat{f}, \hat{f}_{x}=2 \alpha \lambda \hat{f}-2 u_{1} \hat{g}, \quad \hat{h}_{x}=-2 \alpha \lambda \hat{h}+2\left(\alpha_{1}+u_{2}\right) \hat{g} \tag{9}\\
\hat{g}_{t_{m}}=B^{(m)} \hat{h}-C^{(m)} \hat{f}, \hat{f}_{t_{m}}=2 A^{(m)} \hat{f}-2 B^{(m)} \hat{g}, \hat{h}_{t_{m}}=2 C^{(m)} \hat{g}-2 A^{(m)} \hat{h} \tag{10}
\end{gather*}
$$

$$
\begin{gather*}
\hat{g}=\sum_{j=0}^{N+1} \hat{g}_{j} \lambda^{N+1-j}, \hat{f}=\sum_{j=0}^{N+1} \hat{f}_{j} \lambda^{N+1-j}, \hat{h}=\sum_{j=0}^{N+1} \hat{h} \lambda^{N+1-j}, \tag{11}\\
K Q_{j-1}=J Q_{j}, J Q_{0}=0, K Q_{N+1}=1 \\
Q_{j}=\left(\hat{h}_{j}, \hat{f}_{j}, \hat{g}_{j}\right)^{T}, Q_{0}=\beta_{0} S_{0}=\beta_{0}(0,0,1)^{T}, Q_{k}=\sum_{j=0}^{k} \beta_{j} S_{k-j}, k=0,1, \ldots, \quad \beta_{0} \tilde{S}_{N}+\ldots+\beta_{N} \tilde{S}_{N}=0 \tag{12}
\end{gather*}
$$

Set $\beta_{0}=1$ in eq. (12), from eqs. (5) and (12), we have:

$$
\begin{gather*}
Q_{1}=\left(\begin{array}{c}
\alpha^{-1}\left(\alpha_{1}+u_{2}\right) \\
\alpha^{-1} u_{1} \\
\beta_{1}
\end{array}\right), Q_{2}=\left(\begin{array}{c}
-\frac{1}{2} \alpha^{-2} u_{2 x}+\alpha^{-1} \beta_{1}\left(\alpha_{1}+u_{2}\right) \\
\frac{1}{2} \alpha^{-2} u_{1 x}+\alpha^{-1} \beta_{1} u_{1} \\
-\frac{1}{2} \alpha^{-2} u_{1}\left(\alpha_{1}+u_{2}\right)+\beta_{2}
\end{array}\right) \\
\hat{f}=\alpha^{-1} u_{1} \prod_{j=1}^{N}\left(\lambda-\mu_{j}\right), \hat{h}=\alpha^{-1}\left(\alpha_{1}+u_{2}\right) \prod_{j=1}^{N}\left(\lambda-v_{j}\right) \tag{13}
\end{gather*}
$$

By comparing the coefficients of $\lambda^{N-1}, \lambda^{N-2}$ and combining eqs. (11) and (13), we have:

$$
\begin{gather*}
\frac{1}{2} \alpha^{-1} \frac{u_{1 x}}{u_{1}}+\beta_{1}=-\sum_{j=1}^{N} \mu_{j},-\frac{1}{2} \alpha^{-1} \frac{\left(\alpha_{1}+u_{2}\right)_{x}}{\alpha_{1}+u_{2}}+\beta_{1}=-\sum_{j=1}^{N} v_{j} \tag{14}\\
\frac{1}{4} \alpha^{-2}\left[\frac{u_{1 x x}}{u_{1}}-2 u_{1}\left(\alpha_{1}+u_{2}\right)\right]+\frac{1}{2} \alpha^{-1} \beta_{1} \frac{u_{1 x}}{u_{1}}+\beta_{2}=\sum_{j<k}^{N} \mu_{j} \mu_{k} \tag{15}\\
-\frac{1}{4} \alpha^{-2}\left[\frac{\left(\alpha_{1}+u_{2}\right)_{x x}}{\alpha_{1}+u_{2}}-2 u_{1}\left(\alpha_{1}+u_{2}\right)\right]-\frac{1}{2} \alpha^{-1} \beta_{1} \frac{\left(\alpha_{1}+u_{2}\right)_{x}}{\alpha_{1}+u_{2}}+\beta_{2}=\sum_{j<k}^{N} v_{j} v_{k} \tag{16}\\
-\operatorname{det} W=\hat{g}^{2}+\hat{f} \hat{h}=\prod_{j=1}^{2 N+2}\left(\lambda-\lambda_{j}\right)=R(\lambda) \tag{17}\\
2 \hat{g}_{0} \hat{g}_{1}=-\sum_{j=1}^{2 N+2} \lambda_{j}, \hat{g}_{1}^{2}+2 \hat{g}_{0} \hat{g}_{2}+\hat{f}_{1} \hat{h}_{1}=\sum_{j<k} \lambda_{j} \lambda_{k} \\
\beta_{1}=-\frac{1}{2} \sum_{j=1}^{2 N+2} \lambda_{j}, \beta_{2}=\frac{1}{2}\left[\sum_{j<k} \lambda_{j} \lambda_{k}-\frac{1}{4}\left(\sum_{j=1}^{2 N+2} \lambda_{j}\right)^{2}\right] \tag{18}
\end{gather*}
$$

Thus, we get:

$$
\begin{gather*}
\left.\hat{g}\right|_{\lambda=\mu_{k}}=\sqrt{R\left(\mu_{k}\right)},\left.\hat{f}_{x}\right|_{\lambda=\mu_{k}}=-\alpha^{-1} u_{1} u_{k x} \prod_{j=1, j \neq k}^{N}\left(\mu_{k}-\mu_{j}\right)=-\left.2 u_{1} \hat{g}\right|_{\lambda=\mu_{k}}, \quad \mu_{k x}=\frac{2 \alpha \sqrt{R\left(\mu_{k}\right)}}{\prod_{j=1, j \neq k}^{N}\left(\mu_{k}-\mu_{j}\right)} \\
\left.\hat{g}\right|_{\lambda=v_{k}}=\sqrt{R\left(v_{k}\right)},\left.\hat{h}_{x}\right|_{\lambda=v_{k}}=-\alpha^{-1}\left(\alpha_{1}+u_{2}\right) v_{k x} \prod_{j=1, j \neq k}^{N}\left(v_{k}-v_{j}\right)=\left.2\left(\alpha_{1}+u_{2}\right) \hat{g}\right|_{\lambda=v_{k}} \tag{19}\\
v_{k x} \frac{2 \alpha \sqrt{R\left(v_{k}\right)}}{\prod_{j=1, j \neq k}^{N}\left(v_{k}-v_{j}\right)}
\end{gather*}
$$

which gives rise to:

$$
\begin{gather*}
\mu_{k x}=\frac{2 \alpha \sqrt{R\left(\mu_{k}\right)}}{\prod_{j=1, j \neq k}^{N}\left(\mu_{k}-\mu_{j}\right)}, v_{k x} \frac{2 \alpha \sqrt{R\left(v_{k}\right)}}{\prod_{j=1, j \neq k}^{N}\left(v_{k}-v_{j}\right)} \tag{20}\\
\mu_{k t}=\frac{2\left[\mu_{k}^{2}-\left(\sum_{j=1}^{N} \mu_{j}+\beta_{1}\right) \mu_{k}+\sum_{j<k} u_{j} u_{k}+\left(\sum_{j=1}^{N} \mu_{j}+\beta_{1}\right) \beta_{1}-\beta_{2}\right] \sqrt{R\left(\mu_{k}\right)}}{\prod_{j=1, j \neq k}^{N}\left(\mu_{k}-\mu_{j}\right)} \\
v_{k t}=\frac{\left.-2\left[v_{k}^{2}-\left(\sum_{j=1}^{N} v_{j}+\beta_{1}\right) v_{k}+\sum_{j<k} v_{j} v_{k}+\left(\sum_{j=1}^{N} v_{j}+\beta_{1}\right)\right) \beta_{1}-\beta_{2}\right] \sqrt{R\left(v_{k}\right)}}{\prod_{j=1, j \neq k}^{N}\left(v_{k}-v_{j}\right)} \tag{21}
\end{gather*}
$$

then (u_{1}, u_{2}) determined by eq. (14) is a solution of eq. (4).
We consider the hyper-elliptic Riemann surface:

$$
\Gamma: \xi^{2}=R(\lambda), R(\lambda)=\prod_{j=1}^{2 N+2}\left(\lambda-\lambda_{j}\right), \lambda_{2 N+2}=0
$$

for a fixed point p_{0}, we introduce the Abel-Jacobi co-ordinate:

$$
\rho_{m}=\left(\rho_{m}^{(1)}, \rho_{m}^{(2)}, \cdots, \rho_{m}^{(N)},\right)^{T}, m=1,2
$$

with

$$
\begin{align*}
\rho_{1}^{(j)}(x, t)=\sum_{k=1}^{N} \int_{p_{0}}^{\mu_{k}(x, t)} \omega_{j}= & \sum_{k=1}^{N} \sum_{l=1}^{N} \int_{p_{0}}^{\mu_{k}} C_{j l} \frac{\lambda^{l-1} d \lambda}{\sqrt{R(\lambda)}}, \rho_{2}^{(j)}(x, t)=\sum_{k=1}^{N} \int_{p_{0}}^{v_{k}(x, t)} \omega_{j}=\sum_{k=1}^{N} \sum_{l=1}^{N} \int_{p_{0}}^{v_{k}} C_{j l} \frac{\lambda^{l-1} \mathrm{~d} \lambda}{\sqrt{R(\lambda)}} \\
\partial_{x} \rho_{1}^{(j)}= & \sum_{k=1}^{N} \sum_{l=1}^{N} C_{j l} \frac{\mu_{k}^{l-1}}{\sqrt{R(\lambda)}}=\sum_{k=1}^{N} \sum_{l=1}^{N} \frac{2 \alpha \mu_{k}^{l-1} C_{j l}}{\prod_{j=1, j \neq k}^{N}\left(\mu_{k}-\mu_{j}\right)}, \text { and } \tag{22}\\
& \sum_{l=1}^{N} \frac{\mu_{k}^{l-1}}{\prod_{j=1, j \neq k}^{N}\left(\mu_{k}-\mu_{j}\right)}=\delta_{j N}, l=1,2, \cdots, N
\end{align*}
$$

In a similar way, we obtain from (20)- (22):

$$
\begin{gathered}
\partial_{t} \rho_{1}^{(j)}=\Omega_{1}^{(j)}=2\left(C_{j N-2}-\beta_{1} C_{j N-1}+\beta_{1}^{2} C_{j N}-\beta_{2} C_{j N}\right), \partial_{x} \rho_{2}^{(j)}=-\Omega_{0}^{(j)}, \partial_{t} \rho_{2}^{(j)}=-\Omega_{1}^{(j)} \\
j=1,2, \cdots, N . \rho_{1}=\Omega_{0} x+\Omega_{1} t+\gamma_{1} \\
\rho_{2}=-\Omega_{0} x-\Omega_{1} t+\gamma_{2}, \gamma_{1}^{(j)}=\sum_{k=1}^{N} \int_{p_{0}}^{\mu_{k}(0,0)} \omega_{j}, \gamma_{2}^{(j)}=\sum_{k=1}^{N} \int_{p_{0}}^{v_{k}(0,0)} \omega_{j} \Omega_{m}=\left(\Omega_{m}^{(1)}, \Omega_{m}^{(2)}, \cdots, \Omega_{m}^{(N)},\right)^{T} \\
\gamma_{m}=\left(\gamma_{m}^{(1)}, \gamma_{m}^{(2)}, \cdots, \gamma_{m}^{(N)},\right)^{T}, m=1,2
\end{gathered}
$$

We define an Abel map on Γ :

$$
A(p)=\int_{p_{0}}^{p} \omega, \omega=\left(\omega_{1}, \cdots, \omega_{N}\right)^{T}, A\left(\sum n_{k} p_{k}\right)=\sum n_{k} A\left(p_{k}\right)
$$

Consider two special divisors $\sum_{k=1}^{N} P_{m}^{(k)}(m=1,2)$, then we have:

$$
A\left[\sum_{k=1}^{N} p_{1}^{(k)}\right]=\sum_{k=1}^{N} A\left[p_{1}^{(k)}\right]=\sum_{k=1}^{N} \int_{p_{0}}^{\mu_{k}} \omega=\rho_{1}, A\left[\sum_{k=1}^{N} p_{2}^{(k)}\right]=\sum_{k=1}^{N} A\left[p_{2}^{(k)}\right]=\sum_{k=1}^{N} \int_{p_{0}}^{v_{k}} \omega=\rho_{2}
$$

with

$$
p_{1}^{(k)}=\left[\mu_{k}, \xi\left(\mu_{k}\right)\right] \text { and } p_{2}^{(k)}=\left[v_{k}, \xi\left(v_{k}\right)\right]
$$

The Riemann theta function of Γ is defined:

$$
\theta(\zeta)=\sum_{z \in Z^{N}} \exp (\pi i\langle\tau z, z\rangle+2 \pi i\langle\zeta, z\rangle), \zeta \in \mathbb{C}^{N}
$$

where

$$
\zeta=\left(\zeta_{1}, \cdots, \zeta_{N}\right)^{T},\langle\zeta, z\rangle=\sum_{k=1}^{N} \zeta_{j} z_{j}
$$

Then we have:

$$
\begin{gather*}
\sum_{j=1}^{N} \mu_{j}=I-\sum_{s=1}^{2} \operatorname{Re} s_{\lambda=\infty_{s}} \lambda \mathrm{~d} \ln F_{1}(\lambda), \sum_{j=1}^{N} v_{j}=I-\sum_{s=1}^{2} \operatorname{Re} s_{\lambda=\infty_{s}} \lambda \mathrm{~d} \ln F_{2}(\lambda) \\
F_{m}\left(z^{-1}\right)=\theta_{s}^{(m)}+z(-1)^{s-1} \sum_{j=1}^{N} C_{j N} D_{j} \theta_{s}^{(m)}+o\left(z^{2}\right) \tag{23}
\end{gather*}
$$

where

$$
\theta_{s}^{(m)}=\theta\left(\rho_{m}+M_{m}+\eta_{s}\right)=\theta\left(\cdots, \rho_{m}^{(j)}+M_{m}^{(j)}+\eta_{s}^{(j)}, \cdots\right)
$$

It is easy to calculate that:

$$
\begin{equation*}
\partial_{x} \theta_{s}^{(m)}=\sum_{j=1}^{N} 2 \alpha C_{j N} D_{j} \theta_{s}^{(m)} \tag{24}
\end{equation*}
$$

Substituting eq. (24) into eq. (23), we have:

$$
\frac{\mathrm{d}}{\mathrm{~d} z} \ln F_{m}\left(z^{-1}\right)=\frac{1}{2} \alpha^{-1}(-1)^{s-1} \partial_{x} \ln \theta_{s}^{(m)}+o(z) \quad F_{m}\left(z^{-1}\right)=\theta_{s}^{(m)}+\frac{z}{2} \alpha^{-1}(-1)^{s-1} \partial_{x} \theta_{s}^{(m)}+o\left(z^{2}\right)
$$

and

$$
\begin{equation*}
\operatorname{Re} s_{\lambda=\infty_{s}} \lambda \mathrm{~d} \ln F_{m}(\lambda)=\frac{1}{2} \alpha^{-1}(-1)^{s-1} \partial_{x} \ln \theta_{s}^{(m)}, s=1,2, m=1,2 \tag{25}
\end{equation*}
$$

where

$$
\theta_{s}^{(1)}=\theta\left(\Omega_{0} x+\Omega_{1} t+\pi_{s}\right), \theta_{s}^{(2)}=\theta\left(-\Omega_{0} x-\Omega_{1} t+\eta_{s}\right)
$$

From eq. (23), we have:

$$
\begin{equation*}
\sum_{j=1}^{N} \mu_{j}=I+\frac{1}{2} \alpha^{-1} \partial_{x} \ln \frac{\theta_{2}^{(1)}}{\theta_{1}^{(1)}}, \sum_{j=1}^{N} v_{j}=I+\frac{1}{2} \alpha^{-1} \partial_{x} \ln \frac{\theta_{1}^{(2)}}{\theta_{2}^{(2)}} \tag{26}
\end{equation*}
$$

Substituting eq. (26) into eq. (14), we obtain the algebro-geometric solutions of the coupled KdV-MKdV eq. (4):

$$
u_{1}=\frac{\theta_{2}^{(1)}}{\theta_{1}^{(1)}} \exp \left[\alpha\left(2 I-\sum_{j=1}^{2 N+2} \lambda_{j}\right) x+u_{1}^{0}(t)\right], u_{2}=\frac{\theta_{1}^{(2)}}{\theta_{2}^{(2)}} \exp \left[-\alpha\left(2 I-\sum_{j=1}^{2 N+2} \lambda_{j}\right) x+u_{2}^{0}(t)\right]-\alpha_{1}
$$

Acknowledgment

This work was supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2016AL04, ZR2016FL05, ZR2017MF039 and ZR2012AM021), the Natural Science Foundation of China (No.11805114), and the High-Level Trainning Project of Taishan Medical University (No.2015GCC07).

Nomenclature

$$
\begin{aligned}
& t-\text { time, }[\mathrm{s}] \\
& x \text {-space, }[\mathrm{m}]
\end{aligned}
$$

References

[1] Adomian, G., A Review of the Decomposition Method and Sme Recent Results for Non-Linear Equations, Computers and Mathematics with Applications, 21 (1991), 5, pp. 101-127
[2] Yang, X. J., et al., Exact Traveling-Wave Soluton for Local Fractional Boussinesq Equation in Fractal Domain, Fractals, 25 (2017), 4, ID 1740006
[3] Yang, X. J., et al., A New Computational Approach for Solving Non-Linear Local Fractional PDE, Journal of Computational and Applied Mathematics, 339 (2018), pp. 285-296
[4] Yang, X. J., et al., Exact Travelling Wave Solutions for the Local Fractional 2-D Burgers-Type Equations, Computers and Mathematics with Applications, 73 (2017), 2, pp. 203-210
[5] Gesztesy, F., et al., Soliton Equations and their Algebro-Geometric Solutions, Cambridge University Press, Cambridge, UK, 2003
[6] Hou, Y., et al., Algebro-Geometric Solutions for the Gerdjikov-Ivanov Hierarchy, Journal of Mathematical Physics, 54 (2013), 073505-30
[7] Zhao, P., et al., Algebro-Geometric Solutions for the Ruijsenaars-Toda Hierarch, Chaos, Solitons and Fractals, 54 (2012), Apr., pp. 8-25
[8] Korteweg, D. J., et al., On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39 (1895), 240, pp. 422-443
[9] Calogero, F., et al., Spectral Transform and Solitons: Tools to Solve and Investigate Non-Linear Evolution Equations, North-Holland, New York, USA, 1982
[10] Yang, X. J., et al., Modelling Fractal Waves on Shallow Water Surfaces via Local Fractional Korteweg-de Vries Equation, Abstract and Applied Analysis, 4 (2014), May, pp. 1-10
[11] Yang, X. J., et al., Local Fractional Integral Transforms and Their Applications, Academic Press, New York, USA, 2015.
[12] Tu, G. Z., The Trace Identity, a Powerful Tool for Constructing the Hamiltonian Structure of Integrable Systems, Journal of Mathematical Physics, 30 (1989), 2, pp. 330-338
[13] Zhang, Y. F., et al., Some Evolution Hierarchies Derived from Self-Dual Yang-Mills Equtions, Communications In Theoretical Physics, 56 (2011), 5, pp. 856-872

[^0]: *Corresponding author, e-mail: yuechao_71@163.com

