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In this paper, the modified Fornberg-Whitham equation is described by the local 
fractional derivative for the first time. The fractal complex transform and the mod-
ified reduced differential transform method are successfully adopted to solve the 
modified local Fornberg-Whitham equation defined on fractal sets.
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Introduction

The fractional Fornberg-Whitham equation was first proposed for studying the qual-
itative behaviour of wave breaking [1]. The fractional Fornberg-Whitham equation was given:

	
2 2 3

2 2 33u u u u u u uu u
x x xt x t x x

α α

α α

+∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + = +

∂ ∂ ∂∂ ∂ ∂ ∂ ∂
	  (1)

with the following initial condition:
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where ∂α/∂tα = Dα

x(⋅) is the Caputo fractional derivative, defined [2]:
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In this paper, the modified local fractional Fornberg-Whitham equation is given: 

	 2 3 0t xxt x x x xx xxxu u u u u u u uuα + + + − − = 	  (3)

where uα
t is local fractional derivative, defined as [2-11]:
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where Δα[f(x) – f(x0)] ≅ Γ(1 + α)Δ[f(x) – f(x0)].
In our work, we will use the fractal complex transform (also called the local fractional 

complex transform) [12] and the modified reduced differential transform method [13] to solve 
the modified local fractional Fornberg-Whitham equation. The fractal complex transform can 
convert the local fractional differential equation into its differential partner. The modified re-
duced differential transform method is used to find the approximate analytical solution of the 
non-linear problem. 
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Fractal complex transform

Consider the general form of the local fractional differential equation: 
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where uα
t  = ∂αu/∂tα is the local fractional partial derivative, defined as [2-11]: 
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and u is continuous (but not necessarily differentiable) function.
The fractal complex transform reads: 
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where p, q, k, and l are unknown constants. 
Making use of the basic properties of the local fractional derivative and above trans-

form, we have the following [12]: 
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Therefore, we can easily convert the local fractional PDE into partial differential 
equations in the classical sense.

The modified reduced differential transform method

In this section, the basic definition of the modified reduced differential transform 
method is introduced [13].

Definition 1. The new reduced differential transform of u(x, t) at t = t0 is represented [13]:
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where α is a parameter which describes the order of time-fractional derivative.
Definition 2. The differential inverse transform of Uk(x) is represented [13]:
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From eqs. (6) and (7), the following theorems can be obtain, see [13].
Theorem 1. If:
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Theorem 2. If w(x, t) =[u(x, t)]k, then [13]:
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Numerical example 

We now consider the modified local fractional Fornberg-Whitham equation:
	 2 3 0t xxt x x x xx xxxu u u u u u u uuα + + + − − = 	  (8)
with the initial condition：
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To solve eq. (8), we convert it into the differential partner by the fractal complex 
transform:
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We can easily convert eq. (8) into the classical non-linear PDE: 
	 2 3T xx x x x xx xxxu u u u u u u uu+ + + = + 	  (11)

Making use of the modified reduced differential transform method, we can obtain that: 
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From the initial condition eq. (9), we have that: 
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In this case, we can obtain the followings: 
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	 So, we have the solution of eq. (11): 
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Substituting eq. (10) into the previous results, we obtain the approximate solution of eq. (8): 

	
0 1 2

0 1 2( , ) ( ) ( ) ( )
(1 ) (1 ) (1 )

t t tu x t U x U x U x
α α α

α α α
     

= + + +     Γ + Γ + Γ +     
  	 (12)



Yao, S., et al.: Local Fractional Derivative: A Powerful Tool to Model ... 
1706	 THERMAL SCIENCE: Year 2019, Vol. 23, No. 3A, pp. 1703-1706

Finally, we get the exact solution of eq. (8):
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For α = 1, eq. (12) can be written:
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Conclusion 

In the present work, the modified local fractional Fornberg-Whitham equation contain-
ing the local fractional derivative was described for the first time. We used the fractal complex 
transform and modified reduced differential transform method to determine the approximate 
analytical solution of the modified local fractional Fornberg-Whitham equation. It is illustrated 
that the proposed method is more reliable, efficient and accurate. 
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