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In this paper, a new approximate analytical method is established, and it is useful 
in constructing approximate analytical solution a system of fractional differential 
equations. The results show that our method is reliable and efficient for solving the 
fractional system. 
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Introduction 

In 2006, Daftardar-Gejji and Jafari (DGJ) method (DGJM) was proposed by Daft-
ardar-Gejji and Jafari [1]. This method is now widely used by many researchers to study frac-
tional PDE. It was shown that the method is more powerful than existing techniques such as the 
Adomian method [2, 3], travelling-wave method [4-8], and homotopy analysis method (HAM) 
[9]. The method gives rapidly convergent successive approximations of the exact solution, and 
it has no specific requirements [10, 11], such as small parameters, linearization, Adomian poly-
nomials for non-linear terms, etc. Recently, Daftardar-Gejji et al. [12] and Yang [13] have found 
the exact solution and approximate solution of fractional differential equations by using DGJ 
method.

In this paper, we have applied DGJM to study the following systems of fractional 
partial differential equations:
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with the initial conditions: 
  ( ,0) ( ), ( ,0) ( )u x x v x xϕ ψ= =  (2) 

where the fractional derivative is understood in the Caputo sense [14], α and β are parameters 
describing the order of the Caputo fractional derivative (0 < α ≤ 1, 0 < β ≤ 1), and f, g, φ, and 
ψ are given functions.

Such systems arise in various areas, especially in the study of chemical reactions, in 
population dynamics and in mathematical biology [15-21]. 

In [14], Jafari and Seifi studied a special case of the above systems:
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with the initial conditions as:
  ( ,0) ( ), ( ,0) ( )u x sh x v x ch x= =  (4)

From [14], we can see that the structure of the solutions to the systems of fractional 
differential equations are very different from those of integer-order differential equations. 

The aim of the present work is to construct approximate solution the problem of eqs. 
(1) and (2) by using DGJM. Our results show that the method introduces a reliable and efficient 
process for solving the systems. 

Basic definitions of fractional calculus

In this section, we give some basic definitions and properties of fractional calculus 
theory which shall be used in this paper [14].

Definition 1. A real function f(x), x > 0 is said to be in the space Cµ, µ ∈ R if there exists 
a real number p > µ such that f(x) = xpf1(x) where f1(x) ∈ C [0, ∞) and it is said to be in the space 
Cn if and only if f (n) ∈ Cµ, n ∈ N.

The Riemann-Liouville fractional integral operator is defined:
Definition 2. The Riemann-Liouville fractional integral operator of order α > 0 of a 

function f(x) ∈ Cµ, µ ≥ –1 is defined:
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The properties of the operator Jα can be found in and we mention only the following 

[14]: For α, β ≥ 0, x > 0, and γ > –1: 

  

( ) ( )
( ) ( )

( 1)( )
(1 )

J J f x J f x
J J f x J J f x

J x x

+

+

=

=
Γ +

=
Γ + +

α β α β

α β β α

α γ γ αγ
α γ

Definition 3. The fractional derivative of f(x) in Caputo sense is defined [14]: 
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for m –1 < α ≤ m, m ∈ N+, x > 0, and f ∈ C m–1.

We recall here two of its basic properties [14-21]:
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The DGJ method

In this section, we illustrate the basic idea of DGJM [1]. We consider the following 
general function equation:
 ( ) ( )u L u N u f= + +  (5)

where L is a linear operator, N – is a non-linear operator from a Banach space B → B and f a 
known function. We are looking for a solution u of eq. (9) having the series form: 
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The non-linear operator N can be decomposed as:
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From eqs. (6) and (7), eq. (5) is equivalent to: 
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 Define the recurrence relation:
  0 1 0 0( ), ( ) , ( ) , 1, 2,...m m mu f x u L u H u L u H m= = + = + =  (9)

where 
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 Then k-term approximate solution of eq. (5) is given by:
 0 1 1... ku u u u −= + + +  (10)

Solution for the system of eqs. (1) and (2)

In this section we derive an algorithm of the DGJM for solving the systems of eqs. 
(1) and (2).

To use DGJM, we rewrite the systems of eqs. (1) and (2) as:
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with the initial conditions:
  ( ,0) ( ), ( ,0) ( )u x x v x xϕ ψ= =  (12)

where h1 and h2 are known functions, L1 and L2 are linear operators, N1 and N2 are non-linear 
operators, and X = (u, v, ux, vx).

 From the basic properties of the operators Jα and Dα, the systems of eqs. (11) and (12) 
are equivalent to: 
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 Suppose that the solution of eq. (13) takes the form:
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where m = 1, 2..., and Xk = (uk, vk, ukx, vkx), k = 0, 1,... 
 Then we can construct the recurrence relation:
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and so on.

Thus the solutions in the series form are given by:
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 To give a clear over of the algorithm previously introduced, two illustrative system 
of PDE, a linear and another non-linear, have been selected to demonstrate the reliability and 
efficiency of the method. 

 Example 1. Consider the following linear system [16]:
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with the initial conditions as:
  ( ,0) ( ), ( ,0) ( )u x sh x v x ch x= =

 The initial value problem are equivalent to the following fractional integral equations: 
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 Following the algorithm given in eq. (14):
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and so on.
Hence:
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If α = β = 1, then: 
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which are exactly the same as the solutions obtained in [21] converging to the exact solutions, 
u(x, t) = sh(x – t), v(x, t) = ch(x – t).

 Example 2. Consider the following non-linear system:
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with the initial conditions as: u(x, 0) = ex, v(x, 0) = e–x

 Here L1 = –u, L2 = v, N1 = –uxv, and N2 = uvx.
 Following eq. (18), we obtain:
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Thus we find that the solutions are: 
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If α = β = 1 we obtain the close-form solutions [21]: 
  ( , ) e , ( , ) ex t x tu x t v x t− − += =

Conclusion

 In this work, a new approximate analytical method was applied to handle the system 
of the fractional differential equations within the Caputo fractional derivative, The results show 
that it is more reliable, efficient and accurate than the other ones.
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