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In this work, the fractional power series method is applied to solve the 2-D and 3-D 
fractional heat-like models with variable coefficients. The fractional derivatives 
are described in the Liouville-Caputo sense. The analytical approximate solutions 
and exact solutions for the 2-D and 3-D fractional heat-like models with variable 
coefficients are obtained. It is shown that the proposed method provides a very 
effective, convenient and powerful mathematical tool for solving fractional differ-
ential equations in mathematical physics.
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Introduction

In this paper, we consider the 3-D fractional order heat-like model:

 31 2D ( , , )D ( , , )D ( , , )Dt x y zu f x y z u g x y z u h x y z uβα β β= + +  (1)

with the initial condition:

 1( , , ,0) ( , , )u x y z x y zµ=  (2)

and the 2-D order heat-like model:

 1 2D ( , )D ( , )Dt x yu f x y u g x y uα β β= +  (3)

with the initial condition:

 2( , ,0) ( , )u x y x yµ=  (4)

where ( , , , )u u x y z t= , 0 1α< ≤ , D ( , , , )t u x y z tα  is the Liouville-Caputo fractional deriva-
tive [1], ( , , ), ( , , )f x y z g x y z , and ( , , )h x y z  are any functions with respect to the variables ,x y , 
and z. In the case of 2 ( 1,2,3)j jβ = = , then eq. (1) reduces to a fractional heat-like equation 
with variable coefficients [2]. 

The fractional power series method (FPSM) have played an important role in solv-
ing the fractional differential equations in applied and engineering sciences [3-6]. The FPSM 
was proposed to solve the fractional diffusion equation within Caputo fractional derivative 
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[7] and was used to solve the fractional 1-D heat-like equations with variable coefficients [8]. 
The target of the paper is to solve the 2-D and 3-D fractional heat-like models with variable 
coefficients.

The FPS and FPSM 

The basic idea of the FPS 

A power series of the form:

 2
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( ) ( ) ( ) ,n
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∞
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is called a FPS about 0t , where 0 1m mα≤ − < ≤ , m N +∈ , t ( 0t t≥ ) is a variable and nc  are the 
coefficients of the series. 

Let the FPS 0
n

n nc t α∞
=∑  be the radius of convergence, denoted as 0r > . If ( )f t  is a 

function defined by 0( ) na
n nf t c t∞
== ∑  by on 0 t r≤ < , then for 1m mα− < ≤  and 0 t r≤ < , we 

have:
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For more information for the FPS, [3-8].

Applications

The FPSM for solving the 3-D fractional heat-like model with variable coefficients 

Suppose that the solution of eqs. (1) and (2) takes the form:

 
0

( , , , ) ( , , ) k
k

k
u x y z t a x y z tα

∞

=

= ∑  (7)

where ( , , )ka x y z , ( 1,2, )k =  , is denoted as the components of the function ( , , , )u x y z t , which 
will be determined recursively. 

Making use of eq. (2), one obtains:

 0 1( , , ) ( , , )a x y z x y zµ=  (8)

From eq. (6), one gets:
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From eq. (7), it is easy to see that:

 1 1 1 12
0 1 2D D ( , , ) D ( , , ) D ( , , )x x x xu a x y z t a x y z t a x y zβ β α β α β= + + +  (10)

 2 2 2 22
0 1 2D D ( , , ) D ( , , ) D ( , , )y y y yu a x y z t a x y z t a x y zβ β α β α β= + + +  (11)

and

 3 3 3 32
0 1 2D D ( , , ) D ( , , ) D ( , , )z z z zu a x y z t a x y z t a x y zβ β β βα α= + + +  (12)

Substituting eqs. (9)-(12) into eq. (1), we have:
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Comparing the coefficients of kt α  in eq. (13), we have:

 31 2
1 1 1

[ ( 1) 1]( , , ) ( D D D )
( 1)k x k y k z k
ka x y z f a g a h a

k
ββ βα

α − − −
Γ − +
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Γ +

 (14)

such that:
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where 1,2,k = .

The FPSM for solving the 2-D fractional heat-like model with variable coefficients

Let us consider the 2-D fractional heat-like model with variable coefficients:

 2 2 2 21D ( D D ), 0 , 1, 0
2t x yu y u x u x y tα = + < < >  (16)

subject to the initial condition:

 2( , ,0)u x y y=  (17)
In this case, we can write the solutions of eqs. (16) and (17) as follows:
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k
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= ∑  (18)

Obviously,

 2
0 ( , )a x y y=  (19)

From eq. (6) we present:
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With the aid of eq. (18), it is easy to see that:
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Substituting the expansion of eqs. (20)-(22) into eq. (16), it follows that:
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  (23)

Comparing the coefficients of eqs. (20) and (23), we have:
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Substituting eq. (19) into eq. (24), we present:
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4 ( , ) ,
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and so on.
Therefore, we obtain:

 
2 2 2 2 3 2 4

2( , , ) .
( 1) (2 1) (3 1) (4 1)
x t y t x t y tu x y t y

α α α α

α α α α
= + + + + +

Γ + Γ + Γ + Γ +
  (27)

If 1,α =  then we have the exact solution:

 
2 2 2 3 2 4

2 2 2 2( , , ) sinh cosh
2! 3! 4!

y t x t y tu x y t y x t x t y t= + + + + + = +  (28)

Conclusion

In the present task, the FPSM has been successfully applied to solve 2-D and 3-D 
fractional heat-like models with variable coefficients. It is shown that the FPSM is a simple 
and effective method for solving exact approximate solutions of fractional partial differential 
equations with variable coefficients.
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Nomenclature
k – natural number, [–]
N – positive integer, [–]
x, y, z – space co-ordinates, [m]
t – time, [s]

Greek symbols

α – fractional order, [–]
βi – fractional order, [–]
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