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In the paper, beginning from the quasi-geostrophic potential vorticity equation 
with the dissipation and thermal forcing in stratified fluid, by employing multi-
scale analysis and perturbation method, we derive a forced 3-D Zakharov Kuznet-
sor (ZK)-Burgers equation describe the propagation of the Rossby solitary waves 
within the fractional derivative. The exact solutions are given by virtue of the 
(G’/G)-expansion method to analyze the excitation effect of thermal forcing on the 
Rossby waves.
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Introduction

In the atmosphere and ocean, due to the earth rotation and the spherical effect, a 
long life-history large-scale permanent wave is generated. This wave has the characteristics 
of organized consistency in structure, and this wave has the isolated characteristic of stable 
large amplitude, which is called Rossby solitary waves [1, 2]. The Rossby solitary waves are a 
special branch in the field of fluid solitary waves, which has important theoretical and practical 
significance especially in Marine atmospheric science [3]. The KdV and the modified KdV 
(mKdV) [4, 5] as well as Boussinesq equation [6, 7] were derived to describe the amplitude of 
the solitary waves. According to the different dimensions of propagation space, the equations 
which used to describe Rossby solitary waves are divided into one 1-D [8], 2-D [9], and 3-D. 
For describing general theoretical and practical problems in the study of Rossby solitary waves, 
compared with low-dimensional models (mKdV and KP) [10, 11] and 3-D models (ZK and 
S-KdV) [12] are more suitable, because the density of the fluids is depth or height dependent. 

In recent years, the fractional PDE have attracted more and more attention [13, 14]. 
The solitary waves propagation of the fractional PDE have more research value compared with 
the integer order differential equation, especially high-dimensional fractional PDE [15]. For 
example, the fractional PDE to describe solitary waves were investigated [16]. However, the 
effects of dissipation and thermal forcing on the Rossby solitary waves on the basis of high-
dimensional fractional PDE have not been considered. The aim of the paper is to derive a forced 
3-D ZK-Burgers equation wthin the fractional derivatives, and analyze the excitation effect of 
the thermal forcing on the Rossby waves.

* Corresponding author, e-mail: hwyang1979@163.com



Fu, L., et al.: A Forced 3-D Time Fractional ZK-Burgers Model for Rossby ... 
1690 THERMAL SCIENCE: Year 2019, Vol. 23, No. 3A, pp. 1689-1695

Derivation of forced 3-D ZK-Burgers equation

The forced 3-D ZK-Burgers equation from the quasi-geostrophic vortex equation 
including the thermal forcing and dissipation can be written:
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where ψ the stream function, N – the Brunt-Vaisala frequency, s and f – the constants, ρs – the 
density, q – the thermal function, and ∇2 =∂2 / ∂x2 + ∂2 / ∂y2 + ∂2 / ∂z2 is the 3-D Laplace operator.

Suppose that the lower boundary exogenous and dissipation exists, we have:
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where µ0s∇2ψ denotes the dissipation effect, and µ0 = |K/2f|1/2 – the dissipation coefficient.
Assuming that the stream function is composed of two parts. The basic stream function 

and the perturbation stream function can be given:
 ( ( , ) )d

y
u y z c yψ εα εψ ′= − − + +∫  (3)

where ε is a small parameter which is much less than 1, α – called the detuning parameter that is 
used to compare the degree of proximity of the weakness to resonate state, and c – the Rossby 
waves phase speed and can be taken as a constant.

Substituting eq. (3) into eq. (1) and introducing the non-linear β plane for approxi-
mation, we get the disturbance stream function. If the apostrophe is omitted here for the 
convenience of writing, then we have: 
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The lower boundary condition, lateral boundary condition and upper boundary are taken:
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In order to make the non-linearity, dispersion, dissipation and thermal forcing balance, 
we introduce the time and space stretching transform:

 3/2 1/2 1/2 1/2 3/2 3/2
0, , , , ,T t X x Y y Z z q qε ε ε ε ε µ ε µ′= = = = = =  (6) 

Assuming that the ψ has the following:

 0 1ψ ψ εψ= + +  (7)

Substituting (6) and (7) into (4) and (5), and letting ψ0 become:

 0 0( , ) ( , )A X T y zψ ϕ=  (8)

For the determined basic stream function u(y, z), the proper function φ0(y, z) and 
eigenvalue c can be obtained. In order to obtain the control model of Rossby solitary waves 
amplitude, the higher order equation of ε needs to be solved. 
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After a series of calculations with boundary conditions, we may have: 

 0 1 2 3 4 5t x x xxx xyy xzzA A a AA a A a A a A a A a Qα+ + + + + + =  (9)

where AAx represents the non-linear effect, A represents the dissipation effect, and Q is forcing 
term which caused by thermal source. It is called the 3-D forced ZK-Burgers equation. We have 
the following cases: 

(I) When the thermal forcing is absent i. e., a5 = 0, it degenerates to the 3-D  
ZK-Burgers equation: 
 0 1 2 3 4 0t x x xxx xyy xzzA A a AA a A a A a A a Aα+ + + + + + =  (10)

(II) When dissipation is absent i. e., a4 = 0, it degenerates to 3-D forced ZK equation, 
given:
 0 1 2 3 5t x x xxx xyy xzzA A a AA a A a A a A a Q+ + + + + =  (11)

(III) When a4 and a5 are both absent, it is the standard 3-D ZK equation, e. g.:

 0 1 2 3 0t x x xxx xyy xzzA A a AA a A a A a Aα+ + + + + =  (12)

Derivation of forced 3-D time  
fractional ZK-Burgers equation

In this section, to learn more the propagation feature of Rossby solitary waves, the 
semi-inverse method and the fractional variational principle are applied to derive the 3-D time 
fractional ZK equation.

Suppose that A(x, y, z, t) = Bx(x, y, z, t), a potential function Bx(x, y, z, t) provides the 
potential equation of the eq. (12) in the form:

 0 1 2 3 0xt xx x xx xxxx xxyy xxzzB B a B B a B a B a Bα+ + + + + =  (13)

The functional of eq. (13) can be represented: 
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where ci(i = 1,...,6) are Lagrangian coefficient, which can be confirmed later. 
Integrating eq. (14) by parts and taking Bt|T = Bx|R = Bxxx|R = Bxyy|R = Bxzz|R = 0, we get:
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Applying the variation of this function, integrating each parts, optimizing of this 
variation, δJ(B) = 0 and comparing with eq. (13), we can have the Lagrangian coefficiens  
c1 = c2 = c4 = c5 = c6 = 1/2, and c3 = 1/3.

The Lagrangian form of the regular ZK equation is given: 

 2 3 2 2 2
0 1 2 3

1 1 1 1 1 1( , , , , )
2 2 6 2 2 2x t x xx xy xz x t x x xx xy xzF B B B B B B B B B a B a B a B a Bα= − − − + + +  (16)

In a same manner, the Lagrangian form of the time fractional ZK equation could be 
expressed in the following form:
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where 0Dβ
t B is the left Riemann-Liouville fractional derivative [2]. 
So, the functional of the time fractional ZK equation with the dissipation effect will 

take the form:
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On the basis of the Agrawal’s method, the variation of eq. (18) can be written: 
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where tDα
b is the right Riemann-Liouville fractional derivative [2].
Integrating the right-hand side of the eq. (19) using the fractional integration by parts 

rule, optimizing the variation of the function and δJ(B) = 0, we get the Euler-Lagrange equation 
of the 3-D ZK equation: 
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Substituting (17) into the Euler-Lagrange equation given by (20) and substituting the 
potential function Bx(x, y, z, t) = A(x, y, z, t), we get the 3-D time fractional ZK equation with 
the regular function A(x, y, z, t) as:

 ( )00 0 1 2 3
1 D D 0
2 t t t x x xxx xyy xzzA A A a AA a A a A a Aβ β α− + + + + + =  (21)

In addition, A(x, y, z, t) is the Riesz fractional derivative [2], e. g., 
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The another form of the 3-D time fractional ZK equation can be written: 

 0 1 2 3 0D 0 0 1, [0, ]t x x xxx xyy xzzA A a AA a A a A a A t Tβ α β+ + + + + = ≤ ≤ ∈  (23)

If the dissipation is presented, eq. (23) may reduce to the 3-D time fractional ZK-
Burgers model: 

 0 1 2 3 4 0D 0 0 1, [0, ]t x x xxx xyy xzzA A a AA a A a A a A a A t Tβ α β+ + + + + + = ≤ ≤ ∈  (24)

If the dissipation and thermal forcing are presented, eq. (23) can lead to the forced 3D 
time fractional ZK-Burgers model:

 0 1 2 3 4 5 0D 0 1, [0, ]t x x xxx xyy xzzA A a AA a A a A a A a A a Q t Tβ α β+ + + + + + = ≤ ≤ ∈  (25)
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Analytical solutions of 3-D time fractional  
ZK-Burgers equation and dissipation effect

In order to analyze the influence of dissipation on Rossby solitary waves, we seek 
the analytical solution of the 3-D time fractional ZK-Burgers equation by applying (G′/G)- 
-expansion method. 

We now introduce a fractional complex transformation:

 1 2 3( , , , ) ( ),
( 1)

tA x y z t k x k y k z
βωζ ζ

β
= Ψ = + + +

Γ +
 (26)

where k1, k2, k3, and ω are constants to be confirmed later, and get: 
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In order to balance the highest order and non-linear term, we assume the solution form 
of eq. (27) by a polynomial ψ(ζ):
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In this case, we get:
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where G = G(ζ) satisfies:
 0G mG nG′′ ′+ + =  (30)

In this case, we obtain the set of coefficients for the solutions: 
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Finally, we have a series of exact solutions to 3D time fractional ZK-Burgers as: 
 (I) When Δm2 – 4n > 0, the hyperbolic solution takes the form:
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 (II) When Δm2 – 4n < 0, the trigonometric solution can be written: 
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Excitation effect of the thermal  
forcing for Rossby solitary waves 

Let’s take the Gauss thermal function: 

 
21 ( 50)exp

2 4
xQ

 − −
=  

 
 (34)

From eq. (25) we have: 

  0 1 0D 0, 0 1, [0, ]t x x xxxA A a AA a A t Tβ α β+ + + = ≤ ≤ ∈
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If the spatial period is normalized to [0, 2π], and the time intervals is divided into 
points, then Δx = π/N. In this case, we have:
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By the properties of the Fourier transform, we get:
 1 1 3( ), ( )x xxxA F ivFu A iF v Fu− −= = −  (37)

In this case, the spectral form of eq. (35) can be given:
 1 1 1 3

0 1( , ) ( , ) 2 ( ) 2 ( ) 2 ( ) 0A x t t A x t t t F ivFu ta AF ivFu a tiF v Fuα − − −+ ∆ − − ∆ + ∆ − ∆ + ∆ =  (38)

Conclusion 

In our work, we had investigated a forced 3-D ZK-Burgers equation containing the 
fractional derivatives for the first time. The soutions for the 3-D time fractional ZK-Burgers 
equation and dissipation effect had analyzed and the excitation effect the thermal forcing for 
Rossby solitary waves was discussed. The reuslts are efficient for the description of the quasi-
geostrophic potential vorticity equation with the dissipation and thermal forcing in stratified 
fluid. 

Nomenclature

q  – thermal function, [K] 
N  – Brunt-Vaisala frequency, [s–1]
t  – space co-ordinate, [s]
x, y, z – space co-ordinates, [m]

Greek symbols

α  – fractional order, [–]
∇2  – 3-D Laplace operator, [–]
ρs  – density, [gm–3] 
ψ  – stream function, [–]
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