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In this work the fluctuating-lattice Boltzmann method was adopted to numerically 
investigate the Brownian motion of particles in a fluid with inhomogeneous tem-
perature field. It has been found that the Brownian particles are preferential to 
randomly move into a cold fluid area. Once the particles go into the cold area, the 
boundary between the hot fluid and cold fluid acts like a temperature barrier, pre-
venting the particles from going out. Most important of all, the Brownian particles 
can be captured or collected by the cold fluid area if the temperature of cold fluid 
is lower than a critical value. In addition, the dependence of this critical value on 
the fluid viscosity is studied. 
Key words: Brownian motion, nanoparticle, preferential motion,  

lattice Boltzmann method

Introduction

Particles suspended in fluids experience a random force due to the thermal fluc-
tuations in the fluid around them in addition to the average hydrodynamic force. Brownian 
motion may take place for those sub-micro/nanoscale particles. For many applications in mi-
crosystems, the ability to control and measure temperature inside microfluidic devices is crit-
ical since temperature often affects biological or chemical processes. It has been shown that 
the well-defined temperature dependence of the Brownian motion of nanoparticles could be 
used to present a temperature measurement technique which offers several benefits over ex-
isting methodologies [1, 2]. Brownian particle can be adopted to measure the local viscoelastic 
response of soft materials [3] or the topography of a surrounding polymer network [4]. The 
motion of a Brownian probe can also be used to characterize mechanical properties of molec-
ular motors by analyzing the particle’s trajectory [5]. Moreover, the biased Brownian motions 
or rectified Brownian motions, induced by an energy source [6] or by broken spatial reflection 
symmetry [7], provide a very effective technique for particle separation. Furthermore, it has 
been demonstrated [8, 9] that nanoparticles in a conventional base fluid, known as nanofluids, 
tremendously enhance the heat transfer characteristics of the original fluid. At the same time, 
study [10] has declared that Brownian motion is a key mechanism governing the thermal be-
havior of nanofluids. 

Due to its importance in engineering applications, there has always been a great 
deal of interest in developing algorithms that can provide a better understanding of particle 
Brownian motion. Lin et al. [11] studied the constrained Brownian motion of a sphere be-
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tween two walls through an experimental work. The perpendicular and parallel diffusion coef-
ficients of the sphere were presented and evaluated [11]. The same problem was also studied 
by Benesch et al. [12] who used the method of reflection. Iwashita et al. [13] investigated the 
effect of fluid inertia on the short-time motion of Brownian particles by using the direct numer-
ical simulations. They [13] found that the mean square displacements (MSD) in the vorticity 
direction grows rapidly in time and with increasing particle volume fraction. In addition, their 
results indicated that the particles are no more diffusive due to the shear-induced ordering 
for volume fraction up to 0.5. Similarly, Uma et al. [14] used a fluctuating hydrodynamics 
approach to study the Brownian motion of a nanoparticle in a fully developed Poiseuille flow. 
They compared the translational and rotational velocity autocorrelation function (VACF) and 
MSD with analytical and experimental results. They also verified the equipartition theorem for 
a Brownian particle in Poiseuille flow for a range of low Reynolds numbers. Recently, Radiom 
et al. [15] conducted an experiment to measure the hydrodynamic interactions between two 
Brownian spheres at low Reynolds numbers, to check the effect of fluid inertia. They [15] 
showed that the hydrodynamic interaction between the Brownian particles can be predicted by 
the analytical expressions that neglect the inertia of the fluid when the interparticle separation 
is less than twice the thickness of the Stokes layer. On this basis, they [15] suggested a way 
to predict when fluid inertial effects can be ignored by including the gap-width dependence 
into the frequency number. More recently, Mo et al. [16] studied the Brownian motion of a 
sphere in the vicinity of a plane wall, showing the effect of wettability on the statistical prop-
erties of particle motion. Cichocki et al. [17] performed a theoretical analysis of the Brownian 
motion of a particle with an arbitrary shape. They [17] derived analytical expressions for the 
time-dependent cross-correlations of the Brownian translational and rotational displacements. 
Jahanshahi et al. [18] studied the dynamics of a Brownian circle swimmer in an external 
harmonic potential and found a resonance situation for the maximum escape distance as a 
function of the various frequencies in the system. Dessup et al. [19] investigated the Brownian 
motion of a chain of interacting particles in a confining channel. They [19] revealed that the 
mean squared displacement can be larger in a corrugated channel than in a smooth one due to 
the corrugations and their fluctuations.

It is well known that the Brownian motion of particles is very sensitive to fluid 
temperature. The higher the fluid temperature is, the stronger the Brownian motion of par-
ticles is. Undoubtedly, the Brownian motion is isotropic if the fluid temperature is homo-
geneous everywhere, which leads to a totally random movement of particles in the fluid. 
However, the random movement of particles may be changed if the fluid temperature is 
inhomogeneous. For instance, the Brownian motion may become biased if there are hot 
fluid and cold fluid in a flow field because the thermal fluctuations are determined by the 
temperature. Is there a preferential motion for the Brownian particles under this condi-
tion? How does a Brownian particle cross the boundary between hot fluid and cold fluid? 
What does this boundary act like? To answer these questions, a systematic study is needed 
to better understand the feature of Brownian motion in an inhomogeneous environment. 
However, to our knowledge this issue has not been investigated so far. This motivates the 
present work.

The most accurate approach to simulate particle Brownian motion is the fluctuating 
hydrodynamics method, which was proposed by Landau et al. [20]. In this approach, the 
thermal fluctuations of fluid molecules, the origin of the Brownian motion, are modeled by 
adding a random stress tensor to the Navier-Stokes equations. Solving the fluctuating hydrody-
namic equations coupled with the equations of particle motion (Newton’s Second law of mo-
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tion) result in the Brownian motion of particles. As a direct numerical simulation scheme, there 
is no need to add a random force term in the equations of particle motion since random fluctu-
ations are applied directly to the particles, which differs from the Langevin dynamics. So far 
the lattice Boltzmann method (LBM) has become a useful tool for simulating particulate flows 
[21-23]. The bounce-back (BB) rule [24] was first introduced to impose no-slip boundary con-
ditions in LBM. The combination of LBM and BB boundary condition was proved to be robust 
and efficient in the simulations of particulate flows with large number of particles. Application 
of LBM coupled with fluctuating hydrodynamics to simulate particle Brownian motion was 
first proposed by Ladd [25], which is performed by adding a fluctuating term in the lattice 
Boltzmann equation. Nie et al. [26] also proposed a fluctuating-lattice Boltzmann method 
(FLBM) based on the single-relaxation-time model, which can successfully account for the 
short-time motion and deal with particles of irregular shape in a straightforward manner. To 
better understand the effect of the fluid temperature we aim to investigate the Brownian motion 
of particles in an inhomogeneous circumstance through the FLBM in this work [26]. 

Numerical method

The fluid flow is solved by the FLBM [26]. The discrete lattice Boltzmann equations 
of single-relaxation-time model are described:

	 ( )(eq)1( + , ) ( ) ( ) ( ) ( )B
i i i i i if t t t f ,t f ,t f ,t f ,t

τ
 ∆ + ∆ − = − − + x e x x x x 	 (1)

where fi(x, t) is the distribution function on the i-direction discrete velocity ei, fi
(eq)(x, t) – the 

equilibrium distribution function, ∆t – the time step, τ – the relaxation time, fi
(B)(x, t) – the sto-

chastic term representing the thermal fluctuations, which is related to the fluctuating stress in 
the Navier-Stokes equations [26]. 

The fluid density, ρ, and velocity, u, are determined by the distribution function:

	 ,i i i
i i

f fρ ρ= =∑ ∑u e 	 (2)

For the 2-D D2Q9 lattice model used here, the discrete velocity vectors are:
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where c = ∆x/∆t, ∆x is the lattice spacing. The equilibrium distribution function is chosen:
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where cs
2 = c2/3 and cs is the speed of sound, and the weights are set to be w0 = 4/9, w1-4 = 1/9 and  

w5-8 = 1/36. 
As illustrated by Nie et al. [26], the stochastic term is related to the fluctuating stress 

in the following way:
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According to the fluctuation-dissipation theorem, σαβ
(B) has the following property [20]:
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where  denotes averaging over an ensemble, kB – the Boltzmann constant, T – the tempera-
ture of the fluid, and μ – the dynamic viscosity of the fluid. The fluctuating stress is sampled 
from a Gaussian distribution with zero mean and a given variance of 2kBTμ. As shown by Nie 
et al. [26], the following Navier-Stokes equations can be recovered from the lattice Boltzmann 
equations through a Chapman-Enskog expansion:

	 ( ) 0t uα αρ ρ∂ + ∂ = 	 (7a)
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Then the kinematic viscosity of fluid is given by ν = cs
2(τ – 0.5)∆t. In this work we 

assume the stochastic term fi
(B)(x, t) to be the following form to make sure of the conservation 

of mass and momentum:
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In the simulations, the momentum-exchange scheme proposed by Ladd [24] was used 
to calculate the force and torque experienced by the particles. Then the motion of particles can 
be updated by solving the Newton’s equations. 

Validation

In this work, the Brownian motion of 16 particles in a periodic domain was simulated 
to validate the present method. In the simulations only the hydrodynamic force was considered. 
The periodic domain is set to be 256 × 256. The density of the fluid is fixed at ρ = 1 and the 
non-dimensional relaxation time τ = 0.65, which leads to the viscosity of the fluid ν = (2τ – 1)/6 = 
= 0.05. The radius of particle is a = 4.5. The solid/fluid density ratio is fixed at ρs/ρ = 11. In 
order to determine the magnitude of the fluid fluctuation, the temperature of fluid is chosen as 
T = 10–4 and the Boltzmann constant is kB = 1. It should be stated that all the aforementioned 
parameters are in lattice units. 

The instantaneous flow at different times is shown in fig. 1, along with the Brownian 
particles. The time is normalized through t’ = tν/a2. In fig. 1, the thermal fluctuations are clearly 
illustrated by the magnitude of fluid velocity |u| (normalized by ν/a), which are visually dis-
ordered in space and time, representing the random molecular motion of the fluid. This is the 
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origin of the Brownian motion of particles, resulting from the essence of the present FLBM, 
which is different from the Langevin dynamics. As shown in fig. 1, the particles tend to spread 
out with time as they undergo Brownian motion, displaying the classical motion of Brownian 
diffusion. In addition, it is worth stating here that the rotation of particles can be realized in the 
present simulations, as shown in fig. 1. This is one of the advantages of fluctuating hydrody-
namics method [20] over the Langevin dynamics.
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Figure 1. Instantaneous flow (normalized magnitude of fluid velocity, |u|a/ν, the same as below) of 
Brownian motion at different times; (a) t’ = 12.4, (b) t’ = 123.5, (c) t’ = 246.9, (d) t’ = 493.8, (e) t’ = 987.7, 
and (f) t’ = 1975.3; the white arrow on each particle is used to visually track its rotation with horizontal 
orientation at the beginning (the same as below) 

It has been theoretically demonstrated that thermal equilibrium between the Brownian 
particle and the surrounding fluid molecules will reach and that an equi-partition of energy for 
each degree of freedom will be observed, which can be described:

	 ( ) ( )2 2, Ω= =B Bk T k TU t t
M J

	 (8)

where U and Ω refer to the translational velocity and rotational velocity of particle, respectively. 
The M and J are the mass and moment of inertia of particle, respectively. The mean square of U 
and Ω are characterizing the particle temperatures of translational motion and rotational motion, 
respectively. They are normalized by kBT/M and kBT/J in fig. 2, respectively. The particle tem-
peratures are within 5% accuracy compared to the effective temperature of fluid, as one can see 
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in fig. 2, which indicates that there is thermal equilibrium between the Brownian particles and 
the surrounding fluid. 

The long-time tails are fundamental to help understanding the physics of Brownian 
motion. Figure 3 shows the translational and rotational VACF of particles. All the results are nor-
malized by their initial values, i. e. the values at t = 0. As demonstrated by Alder et al. [27] and 
Ailawadi et al. [28], the translational and rotational VACF of a disk undergoing Brownian motion 
have power-law decays over long times that are t–1 and t–2, respectively, which is different from 
the exponential decay predicted by Langevin dynamics. As shown in fig. 3, the similar long-time 
tails are observed for the circular particles in the present simulations, which is consistent with the 
previous results [27, 28].
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Results and discussion

First of all, the Brownian motion of a 
single particle in a fluid with inhomogeneous 
temperature is numerically investigated. As 
shown in fig. 4, a particle with radius a is freely 
moving resulted from thermal fluctuation of 
the surrounding fluid. The size of computa-
tional domain is L × L. We assume that there 
is a circular area with radius, R, inside which 
the fluid is cold. The temperature is denoted as 
Tc. The hot fluid with temperature, Th, fills with 
the rest of domain. For simplicity we choose 
no-slip boundary conditions on all four fixed 
walls of the domain, as shown in fig. 4. In all 
simulations, the parameters are fixed at a = 4.5, 
Th = 1.0·10–3, and ρs/ρ = 11. For a single particle 
the domain is set to be L = 14a and R = 3.5a. 
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In addition, the non-dimensional relaxation time is fixed at τ = 0.6 unless otherwise stated. The 
particle is initially placed in the center of the domain. 

Figure 5 shows the instantaneous flow of particle Brownian motion at different times. 
Four kinds of cold temperature are taken into account, i. e. Tc = 1.0·10–3, 5.0×10–4, 1.0·10–4 

and 5.0·10–5 (from top to bottom). For the results of Tc = 1.0·10–3, the root mean square (RMS) 
of fluid velocity is homogeneous everywhere because there is no temperature difference in the 
fluid. However, things are different for other results. According to eq. (6), for constant viscosity 
the magnitude of thermal fluctuation of fluid molecule is determined by the fluid temperature, 
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Figure 5. Instantaneous flow of Brownian motion at different times; (a) t’ = 16.4, (b) t’ = 164.6,  
(c) t’ = 658.4 and (d) t’ = 1646.1; the values of Tc are 1·10-3, 5·10-4, 1·10-4 and 5·10-5, from top to bottom 
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suggesting that low temperature leads to slow thermal motion. By displaying the RMS of fluid 
velocity, a cold temperature zone is observed in the central area, which is more obvious when 
decreasing the value of Tc, as we can see in fig. 5. When there is no cold fluid (the case of Tc 
= 1.0·10–3), the particle is randomly moving in the whole domain. However, the particle will 
experience a small Brownian force once it enters the cold temperature area, leading to the fact 
that the motion of particle is slowed down in this area. Furthermore, numerical simulations also 
indicate that there is more trend for the particle to enter the cold temperature area when the 
value of Tc is lower. Most important of all, it is found that the particle will stay in the cold area 
if Tc is low enough, which is seen for the cases of Tc = 1.0·10–4 and Tc = 5.0·10–5. 

As shown in fig. 5, in view of the value of R = 3.5a the cold temperature area is very 
small. Even so, the particle seems to stay in this area all the time. The boundary between the 
hot fluid and cold fluid acts like a temperature barrier, which prevents the particle from entering 
the hot fluid area. The reason behind this is that the particle will experience much stronger col-
lisions due to the hot fluid molecules once it goes across the boundary. These collisions act as a 
stronger repulsive force to prevent the particle moving forward. 

In order to better address this issue, we present the trajectories of particle during  
t’ = 0~2300 for different values of Tc in fig. 6. The co-ordinates are normalized through x’ = 
x/a and y’ = y/a. The effect of Tc on the particle Brownian motion is significant, as one can see 
from the figure. When decreasing the value of Tc the particle is likely to move around the central 
area, i. e. the cold area. In particular, the trajectory is nearly sited at the cold area for the case of  
Tc = 1.0·10–4, which further indicates that the particle is kept from entering the hot fluid area. 

 
          

(a)                        (b)                  (c)
0           2            4           6            8           10         12         14

x'

14

12

10

8

6

4

2

0

y'

0           2            4           6            8           10         12         14
x'

14

12

10

8

6

4

2

0

y'

0           2            4           6            8           10         12         14
x'

14

12

10

8

6

4

2

0

y'

Figure 6. Trajectories of particle Brownian motion during t’ = 0~2300 for different values of Tc;  
(a) 1·10–3, (b) 4·10–4, and (c) 1·10–4; the blue circle represents the initial position of Brownian particle 

Figure 7 shows the trajectories of particle for Tc = 1·10–4 at different initial positions. 
As one can observe, though the particle starts to move from different position (even at the 
hot fluid area), it enters the cold fluid area and stays there eventually. This is interesting be-
cause it provides a new way to capture or collect the Brownian particles (sub-micro particles or 
nanoparticles) in a fluid. If the fluid temperature is the same everywhere, the Brownian motion 
of particles is random but isotropic, which leads to a homogeneous distribution of particles. 
However, the Brownian particles will exhibit a preferential motion if there is temperature dif-
ference in the fluid. In addition, there is an increasing trend for the particles to move towards 
the cold fluid area with decreasing temperature. This makes it possible that the Brownian can 
be captured by the cold temperature area somewhere in the fluid.
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In what follows we present another two cases to further illustrate the influence of 
temperature barrier. The first case is depicted in fig. 8, showing the instantaneous flow (at  
t’ = 2469.1) of Brownian motion of 36 particles for different values of Tc. The parameters are set 
to be L = 16a, R = 10a, and τ = 0.6. In comparison with the case of single particle, fig. 5, similar 
results can be observed. The particles are randomly distributed in the whole domain when the 
fluid temperature is homogeneous (Tc = 1·10–3), as shown in fig. 8(a). Nevertheless, it is clear 
that the particles are preferential to stay in the central area when Tc = 5·10–4. In particular, all 
the particles will go into the central area eventually when the temperature is low enough, such 
as Tc = 1·10–4, as depicted in fig. 8(c). In other words, the cold area captures all the particles 
when they are randomly moving in the fluid. 
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Figure 7. Trajectories of particle Brownian motion during t’ = 0~2300 for Tc = 1∙10–4 at different  
initial positions 
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Figure 8. Instantaneous flow of Brownian motion of 36 particles at t’ = 2469.1 for different values  
of Tc; (a) Tc = 1·10–3, (b) Tc = 5·10–4, and (c) Tc = 1·10–4  

Figure 9 shows the instantaneous flow of Brownian motion of 36 particles for  
Tc = 5·10–5 at different times, which clearly illustrates how the cold area captures all the particles. 
At the beginning of the simulation, the particles are placed homogeneously over the computa-
tional domain, as one can see in fig. 9(a). In this case the temperature of the cold fluid is very 
low, resulting in very small thermal fluctuations in the central area. As a consequence, most of 
particles quickly go into the central area and do not leave, which is seen in fig. 9(c). Furthermore, 
it takes a much longer time for the rest of particles to be captured. The reason behind this is clear. 
There is not much room for these particles in the central area. When approaching this area, they 
are repelled due to the hydrodynamic interactions as well as particle collisions. 
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The second case is illustrated in fig. 10. The parameters are L = 32a, τ = 0.6, and  
Tc = 5·10–5, and the number of particles is 100. A channel-like area of cold fluid is used in this 
case instead of a circular area. The results are similar to those shown in fig. 9. 

The effect of fluid viscosity, ν, is also investigated in this work. It is found that the 
effect of temperature barrier is decreasing when increasing ν. This can be observed from fig. 11, 
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Figure 9. Instantaneous flow of Brownian motion of 36 particles for Tc = 5·10–5 at different times:  
(a) t’ = 0.16, (b) t’ = 164.6, (c) t’ = 329.2, (d) t’ = 658.4, (e) t’ = 1316.9, and (f) t’ = 2469.1 
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Figure 10. Instantaneous flow of Brownian motion of 100 particles for Tc = 5·10–5 at different times;  
(a) t’ = 16.5, (b) t’ = 329.2, and (c) t’ = 1975.3 
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which presents the trajectories of single particle for Tc = 5∙10–5 for different fluid viscosity. 
Other parameters are the same to those of fig. 7. It is interesting to find that the effect of tem-
perature barrier on the Brownian motion of particle is almost negligible for ν = 1/6. The particle 
can hardly feel the boundary between the hot fluid and cold fluid in this case, even at the low 
temperature as Tc = 5·10–5. However, results show that there still exists a critical value of Tc  
(i. e. *)cT  below which the particle can be captured.

To gain more insight into this issue, we 
carry out a large amount of simulations to ob-
tain the critical value of Tc by varying the fluid 
viscosity (the relaxation time τ), under the same 
flow conditions. We summarize the results in 
fig. 12. As one can observe in the figure, the 
value of Tc

*
 decreases sharply as the viscosity 

increases (note the log-log scale), which indi-
cates that very low temperature is needed to 
capture the nanoparticles when they are ran-
domly moving in the fluid with large viscosity. 
Furthermore, a power-law relationship is ob-
served between Tc

* and ν. The exponent value 
is found to be about –2.08 through the least 
square calculation. 

Finally, it should be mentioned that the 
viscosity is kept constant for every single sim-
ulation in this work. In other words, the effect 
of fluid temperature on its viscosity is not taken into account. In general, the fluid viscosity de-
creases as the temperature increases. However, it is believed that there exist some fluids whose 
viscosity are not sensitive to the temperature. Therefore, the conclusion of this work still stands 
for these fluids. On the other hand, we believe that only the critical value of Tc may be different 
if we consider the effect of fluid temperature on its viscosity. Of course, to understand further 
the complex dynamics involved in this process, we intend to perform simulations with these 
kinds of effect. Also, 3-D situations, that is, the Brownian motion of spheres, will be considered 
in the near future.

 
(a) (b) (c)

0           2            4           6            8           10         12         14
x'

14

12

10

8

6

4

2

0

y'

0           2            4           6            8           10         12         14
x'

14

12

10

8

6

4

2

0

y'

0           2            4           6            8           10         12         14
x'

14

12

10

8

6

4

2

0

y'

Figure 11. Trajectories of particle Brownian motion (Tc = 5·10–5) for different viscosity; (a) ν = 1/6,  
(b) ν = 1/10, and (c) ν = 1/30 
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Conclusion

In this work the previously developed FLBM was adopted to numerically investigate 
the preferential Brownian motion of particles in a fluid with inhomogeneous temperature field. 

First of all, the method was validated by simulating the Brownian motion of 16 par-
ticles in a fluid with homogeneous temperature field. The computed translational or rotational 
velocity correlation function has a long-time tail, decaying at t –1or t –2 at long times, which is 
consistent with the theoretical prediction. Then, the method was used to simulate the Brownian 
motion of particles in a fluid with high temperature and low temperature. Results show that 
the particles are preferential to randomly move into the cold fluid area. Most important of all, 
the particles go into the cold area and stay there eventually if the temperature of the cold area 
is low enough, irrespective of their initial positions. In other words, the cold fluid can capture 
or collect the Brownian particles. Once the particles enter the cold area, the boundary between 
hot fluid and cold fluid acts like a temperature barrier, which prevents the particles going out. 
Furthermore, there exists a critical value of cold fluid temperature, below which the particles 
can be captured. And this critical value decreases as the fluid viscosity increases. 

Acknowledgment

This work was supported by the National Key Research and Development Program of 
China (2017YFB0603700) and the National Natural Science Foundation of China (Grant No. 
11972336 and 11272302).

References
[1]	 Park, J. S., et al., Temperature Measurement for a Nanoparticle Suspension by Detecting the Brownian 

Motion Using Optical Serial Sectioning Microscopy (OSSM), Measurement Science and Technology, 16 
(2005), 7, pp. 1418-1429.

[2]	 Chung, K., et al., Three-Dimensional in Situ Temperature Measurement in Microsystems Singu Brownian 
Motion of Nanoparticles, Analytical Chemistry, 81 (2009), 3, pp. 991-999

[3]	 MacKintosh, F. C., et al., Microrheology, Current Opinion in Colloid & Interface Science 4, (1999), 4, 
pp. 300-307

[4]	 Tischer, C., et al., Three-Dimensional Thermal Noise Imaging, Applied Physics Letters, 79 (2001), 23, 
pp. 3878-3880

[5]	 Jeney, S., et al., Mechanical Properties of Single Motor Molecules Studies by Three-Dimensional Ther-
mal Force Probing in Optical Tweezers, Chem. Phy. Chem., 5 (2004), 8, pp. 1150-1158

[6]	 Dean Astumian, R., Thermodynamics and Kinetics of a Brownian Motor, Science, 276 (1997), 5314, pp. 
917-922

[7]	 Derenyi, I., et al., AC Separation of Particles by Biased Brownian Motion in a Two-Dimensional Sieve, 
Physical Review E, 58 (1998), 6, pp. 7781-7784

[8]	 Keblinski, P., et al., Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids), 
International Journal of Heat and Mass Transfer, 45 (2002), 4, pp. 855-863

[9]	 Lee, S., et al., Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles, Journal of 
Heat Transfer, 121 (1999), 2, pp. 280-289

[10]	 Prasher, R., et al., Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids), Physical Review 
Letters, 94 (2005), 2, 025901

[11]	 Lin, B., et al., Direct Measurements of Constrained Brownian Motion of an Isolated Sphere between Two 
Walls, Physical Review E 62, (2000), 3, pp. 3909-3919

[12]	 Benesch, T., et al., Brownian Motion in Confinement, Physical Review E, 68 (2003), 2, 021401
[13]	 Iwashita, T., et al., Short-Time Motion of Brownian Particles in a Shear Flow, Physical Review E, 79 

(2009), 3, 021401
[14]	 Uma, B., et al., Nanoparticle Brownian Motion and Hydrodynamic Interactions in the Presence of Flow 

Fields, Physics of Fluids, 23 (2011), 7, 073602
[15]	 Radiom, M., et al., Hydrodynamic Interactions of Two Nearly Touching Brownian Spheres in a Stiff Po-

tential: Effect of Fluid Inertia, Physics of Fluids, 27 (2015), 2, 022002



Nie, D.-M., et al.: Direct Numerical Simulation of Particle Brownian Motion in a Fluid ... 
THERMAL SCIENCE: Year 2020, Vol. 24, No. 6A, pp. 3707-3719	 3719

[16]	 Mo, J., et al., Brownian Motion as a New Probe of Wettability, The Journal Of Chemical Physics, 146 
(2017), 13, 134707

[17]	 Cichocki, B., et al., Brownian Motion of a Particle with Arbitrary Shape, Physical Review E, 142 (2015), 
21, 214902

[18]	 Jahanshahi, S., et al., Brownian Motion of a Circle Swimmer in a Harmonic Trap, Physical Review E, 95 
(2017), 2, 022606

[19]	 Dessup, T., et al., Enhancement of Brownian Motion for a Chain of Particles in a Periodic Potential, 
Physical Review E, 97 (2018), 2, 022103

[20]	 Landau, L. D., et al., Fluid Mechanics, Pergamon Press, London, UK, 1959
[21]	 Aidun, C. K., et al., Lattice-Boltzmann Method for Complex Flows, Annual Review of Fluid Mechanics, 

42 (2010), Jan., pp. 439-472
[22]	 Nie, D., Numerical Investigation of a Capsule-Shaped Particle Settling in a Vertical Channel, Thermal 

Science, 16 (2012), 5, pp. 1419-1423
[23]	 Xian, D. Q., et al., An Analytic Study on the Two-Temperature Model for Electron-Lattice Thermal Dy-

namic Process, Thermal Science, 21 (2017), 4, pp. 1777-1782
[24]	 Ladd, A. J. C., Numerical Simulations of Particulate Suspensions via a Discretized Boltzmann Equation 

Part I. Theoretical Foundation, Journal of Fluid Mechanics, 271 (1994), July, pp. 285-309
[25]	 Ladd, A. J. C., Numerical Simulations of Particulate Suspensions via a Discretized Boltzmann Equation, 

Part II. Numerical Results, Journal of Fluid Mechanics, 271 (1994), July, pp. 311-339
[26]	 Nie, D., et al., A Fluctuating Lattice-Boltzmann Model for Direct Numerical Simulation of Particle 

Brownian Motion, Particuology, 7 (2009), 6, pp. 501-506
[27]	 Alder, B. J., et al., Decay of the Velocity Autocorrelation Function, Physical Review A, 1 (1970), 1, pp. 

18-21
[28]	 Ailawadi, N. K., et al., Cooperative Phenomena and the Decay of the Angular Momentum Correlation 

Function at Long Times, The Journal of Chemical Physics, 54 (1971), 8, pp. 3569-3571

Paper submitted: June 12, 2018
Paper revised: November 30, 2018
Paper accepted: March 15, 2019

© 2020 Society of Thermal Engineers of Serbia
Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia.

This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions


