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In this paper, a new single staggered grid method is proposed to solve the fluid dy-
namic problems numerically. The advantages of the new grid method are analyzed 
in comparison with the classical grid algorithms such as the staggered grids, col-
located grids and semi-staggered grids. The discretization of the basic equations 
for the fluid dynamics on the new single staggered grids is derived and the corre-
sponding SIMPLE algorithm is introduced. As an example, the heat transfer prob-
lem of fluid-flow at a right angle is solved to prove the validity of the new single 
staggered grid method.
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Introduction 

The heat transfer problems are widely concerned as one of the key scientific problems 
in nature, and occur in many engineering branches such as the unconventional gas exploitation, 
geothermal mining and geological storage of CO2 [1, 2]. For the steady heat transfer problems, 
analytical solutions are obtained with the aid of the integral transform methods easily, see [3]. 
However, in practical engineering, the heat transfer problems are difficult to be solved ana-
lytically due to the irregular and complex boundary conditions of different models. The finite 
volume method (FVM) as an effective numerical method has been widely applied to obtain 
numerical solutions of complex heat transfer problems [4, 5]. For the FVM, it is important to 
choose a reasonable grid system for improving the accuracy of numerical solution and reducing 
the computation time. 

Originally, to solve the incompressible fluid-flow problem and heat transfer problems 
numerically, the staggered grid system was used to release the influence of oscillating pressure 
field [6-9]. However, when the fluid dynamic equations are discretized on the staggered grids, 
different variables are stored in three different control volumes, which causes the huge amount 
of computation, especially for 3-D problems. In view of this problem, Rhie and Chow [10] pro-
posed a momentum interpolation method to the collocated grids. Since all variables of the fluid 
dynamics are stored in a set of control volume in the collocated grids, it has advantages in reduc-
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ing complexity of the programming and computational time. It is worth noting that the use of 
the collocated grid system greatly depends on the momentum interpolation method to coupling 
the pressure and velocities [10]. In details, the momentum interpolation technique adds a term to 
the discrete fluid continuity equation for ensuring their integrability and regularity. For example, 
Armfield [11, 12] and Russell and Abdallah [13] added a pressure’s fourth-order derivative term 
and sixth-order derivative item to the continuous equation to avoid the loss of even-odd, respec-
tively. However, the collocated grid method has lower precision resulting from the momentum 
interpolation. In particular, the pressure oscillation phenomenon still appears in the range of small 
time steps when the previous interpolation methods were applied to the unsteady problems [14]. 
Recently, combining the advantages of staggered grid method and collocated grid method, Ye and 
Zhang [15] proposed a semi-staggered grid method storing different variables in two different 
control volumes to solve the Navier-Stokes equations. Liu [16] gave the theoretical derivation of 
a new single staggered grid algorithm. Aiming to verify the validity of the single staggered grid 
algorithm, we applied this algorithm to solve the heat transfer problem of fluid-flow at a right 
angle in this paper.

The single staggered grid system and the SIMPLE algorithm

The single staggered grid system

To illustrate the characteristics of single staggered grid system, four typical grid sys-
tems for FVM are shown in fig. 1. The green regions represent the control volumes of different 
grid system storing different variables. For the staggered grid system with three sets of control 
volumes, the scalar variables p, T, and ρ (pressure, temperature, and mass) are stored on the cen-
tral node of main control volume and the velocity components u and v are stored on the bound-
ary of their control volumes with half grid difference to the main control volume, respectively, 
see fig. 1(a) [17]. For the collocated grid system with a set of control volume, all variables are 
stored on the central node of main control volume, see fig. 1(b) [18]. For the semi-staggered 
grid system with two sets of control volumes, the scalar variables p, T, and ρ are stored on the 
central node of main control volume and velocity components u and v are stored on the corner 
node of main control volume, see fig. 1(c) [15]. For the single staggered grid system, the scalar 
variables p, T, ρ, and the velocity component v are stored on the central node of main control 
volume while the velocity component u is stored on the boundary of its control volumes with 
half grid difference to the main control volume, see fig. 1(d). 

Obviously, compared with the staggered grids, the single staggered grid system is of 
less control volumes and it is benefit to design program and reduce the computation time. More-
over, due to the retention of the part staggered grid system, the single staggered grid system is 
of higher accuracy than the collocated grid system. 

The discretization of fluid dynamic equations  
on the single staggered grids

The general expression of the fluid dynamic equations is [6]:

 ( ) div( ) div( grad )u S
t
ρφ ρ φ Γ φ∂

+ = +
∂

 (1)

where ρ is the fluid density, ϕ – the variables to be solved, Γ – the diffusion coefficient, S – the 
source term, and div represents the divergence.

When ϕ, Γ, and S take different values, eq. (1) represents different types of fluid dy-
namic equations. The details are listed in tab. 1.
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              Table 1. Basic fluid dynamic equations [6]
The types of equations ϕ Γ Sϕ

Continuity equation 1 0 0

Momentum equation ui µ ( ) ( )
i

ji
u

i i i j i

up u S
x x x x x

µ µ
∂∂ ∂ ∂ ∂

− + + +
∂ ∂ ∂ ∂ ∂

Energy equation T k ST

The discrete process of basic fluid dynamic equations on the single staggered grid 
system are displayed as follows.

Considering a 2-D steady-state problem of fluid dynamic, eq. (1) becomes [6]:

 
( ) ( )u v

S
x y x x y y

ρ φ ρ φ φ φ
Γ Γ

∂ ∂ ∂ ∂ ∂ ∂
+ = + +

∂ ∂ ∂ ∂ ∂ ∂
  

      
 (2)

where u and v are the velocity components.
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Figure 1. Sketch maps of different grid systems for the FVM; (a) staggered grid system, (b) collocated 
grid system, (c) semi-staggered grid system, and (d) single staggered grid system
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If ϕ is the scalar variables, the integral of eq. (2) on the scalar control volume of the 
single staggered grid system, fig. 1(d), is expressed as [6]:

 ( ) ( )d d d d d
V V V V Vx y x x y y x

u V v V V V S Vφ φρ φ ρ φ Γ Γ
∆ ∆ ∆ ∆ ∆

∂ ∂ ∂ ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂ ∂ ∂ ∂

  + = + +  
   

∫ ∫ ∫ ∫ ∫  (3)

With the aid of central difference method and the linear interpolation method, eq. (3) 
is dispersed as [6]:

 

[( ) ( ) ] [( ) ( ) ]
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 (4)

Simplifying eq. (4) yields:

 oP P W W E E S S N Na a a a a Sφ φ φ φ φ= + + + +  (5)

where aP, aW, aE, aS, aN, and So are variables related to ρ, Δx, Δy, δx, δy,Γ,u,and v.
If ϕ is the velocity component u, and the pressure gradient term δp/δx is separated 

from the source term S, eq. (1) becomes [6]:

 ( ) ( )
u

uu vu u u
S

x y x x y y
p
x

ρ ρ
Γ Γ

∂ ∂ ∂ ∂ ∂ ∂
+ = +

∂ ∂ ∂ ∂ ∂ ∂

∂   − +    ∂   
 (6)

Similarly, eq. (6) is dispersed on the single staggered grid system:

 o( )P P W W E E S S N N E Pa a a a a b P P Sφ φ φ φ φ ′= + + + + − +  (7)

where PE and PP are the pressures of point E and F on single staggered grids, fig. 1(d).
If ϕ is the velocity component v, eq. (1) becomes [19]:

 ( ) ( )uv vv v v
S

x y x x y y
ρ ρ

Γ Γ
∂ ∂ ∂ ∂ ∂ ∂

+ = + +
∂ ∂ ∂ ∂ ∂ ∂

  
      

 (8)

The discrete form of eq. (8) is same to eq. (5). Here, to avoid the pressure oscillations, 
the momentum interpolation method is applied to solve the term aP. The expression of the mo-
mentum interpolation is [19]:

 
( ) ( )

( ) ( )
N Pv i i pi n v

n
p n p n

P Pa u b x
v

a a

α α −+ ∆
= −

∑  (9)

The SIMPLE algorithm

The SIMPLE algorithm is known as the effective method to solve incompressible flow 
field [8, 20]. In this paper, after performing the discretization of the fluid dynamic equations on 
the single staggered grids, the SIMPLE algorithm shown in fig. 2 is used to solve the discrete 
equations. The general steps of the SIMPLE algorithm are as follows [8, 20]:
– It is assumed that the initial velocity distribution and pressure distribution of the flow field are 
u*, v*, and p*, respectively. The differences between u*, v*, p* and the actual velocity distribution 
u, v and pressure distribution p are u′, v′, and p′, respectively. Here, u′, v′, and p′ are called the 
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velocity correction terms and pres-
sure correction term.
– Substituting u, v, p, v*, and p* into 
the discrete momentum equations 
yields: 

                     1

2

u p

v p

λ

λ

′ ′=

′ ′=





            (10)

where λ1 and λ2 are the variables 
related to ρ, Δx, Δy, δx, δy,and Γ.
– Substituting the velocity correc-
tion terms u′ and v′ into the discrete 
continuity equations and obtaining 
the pressure correction term p′.
– The u, v, and are corrected as:

                 

*

*

*

p

u u p

v v p

p p
λ

λ

′

′= +

′=

 = +


 +

          (11)

 – Solve the other discrete fluid 
dynamic equations.

Solving the heat  
transfer problems

To verify the validity of the 
new single staggered grid meth-
od, a heat transfer problem of flu-
id-flow at a right angle was solved 
in this paper. Figure 3 shows the geometric mod-
el. The boundary-value condition is T = x + y + xy. 

Based on the FORTRAN language, the 
calculation programs for the above heat transfer 
problem were designed by the single staggered 
grid method and the SIMPLE algorithm. For the 
comparison, the same heat transfer problem was 
also solved by the commercial software COM-
SOL based on the finite element method. The re-
sults are shown in fig. 4. Obviously, the tempera-
ture contours acquired from the single staggered 
grid method is same to the results from the COM-
SOL. It is indicated that the new single staggered 
grid method is effective to solve the heat-transfer 
problems.

Further, to explore the sensitivity of the 
new single staggered grid method to the of grid 
scales, quadrilateral meshes with different scales 
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Figure 3. Geometric model of the  
heat transfer problem of fluid-flow at  
a right angle
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(5 × 5, 10 × 10, and 20 × 20) were applied to solve the heat transfer problem. Figure 5 shows 
the temperature distribution along the diagonal line of the model under different grid scales. In 
addition, the correlation coefficients, r, between the results based on the single staggered grids 
with different grid scales and the COMSOL were calculated. As shown in tab. 2, all the correla-
tion coefficients are more than 0.99. Clearly, the results from the 20 × 20 single staggered grid 
scales are the closest to results from the COMSOL. The new single staggered grid method is 

slightly sensitive to grid scales.

Conclusion

In this paper, a new single staggered grid 
method was proposed to solve the heat trans-
fer problems numerically. The single staggered 
grid method is of less grid control volumes 
than classical staggered grid system and high-
er accuracy than the classical collocated grid 
system. Based on the single staggered grid sys-
tem and the SIMPLE algorithm, the programs 
by the FORTRAN language was designed to 
solve the heat transfer problem of fluid-flow at 
a right angle. The numerical results are almost 
the same as those calculated by the COMSOL. 
It is indicated that the new single staggered 
grid method is valid and effective to solve the 
fluid dynamic problems.
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Table 2. The correlation coefficient, r, between 
the results from the single staggered 
grid method and the COMSOL

Grid scales 5 × 5 10 × 10 20 × 20
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k – thermal diffusion coefficient, [m2s–1] 
p – fluid pressure, [Pa]
T – temperature, [°C]
t  – time, [s]
u – fluid velocity component in x-direction, [ms–1]
v – fluid velocity component in y-direction, [ms–1]

Δx – grid interval in x-direction, [m]
Δy – grid interval in y-direction, [m]

Greek symbols

µ – fluid dynamic viscosity, [Pas]
ρ – fluid density, [kgm–3]


