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The influence scope of the blasting borehole is the key factor to the construc-
tion of loose blasting measures. A non-linear numerical model considering the 
multi-physical coupling factors, including in-situ stress, coal damage, and gas 
migration, etc., is established, and the model is solved by Comsol Multiphyscics 
software. The influence range of gas migration is analyzed, and the influence scope 
is determined to be between 3.5 m and 4.0 m. The change law of gas concentra-
tion and gas volume in test boreholes around blasting boreholes are investigated, 
and the effective influence range of loose blasting is about between 3.5 m and 4.0 
m. The consistency between field test and numerical simulation results show that 
the effective influence range of loose blasting can be regard as about 3.5 m. The 
conclusions of this study provide an effective solution for improving the effect of 
loose blasting as a local anti-penetration measure and determining the reasonable 
parameter of hole placement.
Key words: loose blasting, effective influence range, multi-physical coupling, 

gas migration, elasticity modulus

Introduction

With the increasing number of high gas and prominent mines in China, the difficulty 
of mine gas control was further increasing [1, 2]. For high-gas, low-permeability and coal-gas 
accidents always took place, which are caused by inadequate anti-penetration measures [3]. 
Loose blasting, namely, as a local comprehensive measure to prevent coal and gas outburst, had 
a good effect in enhancing the permeability of coal seams [4-7]. It had been used in Beipiao and 
Lianshao mining areas as early as the mid 1960 in mining areas. In recent years, it had been 
widely used in the field of local measures to prevent coal and gas outburst of excavation faces 
[8, 9]. The initiation and propagation processes of cracks through different mechanisms were 
studied by using simulation [10]. The fractal deep-hole blasting and its induced stress behavior 
of hard roof strata in Bayangaole coal mine of China was studied by LS-DYNA simulation soft-
ware [11]. Using the methods of simulation and on-site observation, the effect of loose blasting 
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on the pressure relief was investigated [12]. Recently, some scholars analysed the effective in-
fluence range of loose blasting and the spacing parameter of blasting borehole is proposed [13, 
14]. However, the influence of multi-physics coupling factors on blasting boreholes remains 
to be reported. The factors include elastic mechanics, coal-rock damage and gas migration. 
However, many researches were usually lack of field engineering verification. Therefore, using 
numerical simulation and engineering verification methods to study on the effective influence 
range of loose blasting, so as to provide theoretical reference for more efficient use of loose 
blasting measures to improve the permeability of coal seam and prevent coal and gas outburst 
accidents.

Mathematical model

Elastic mechanics equation

Since the loose blasting is a transient process, the time term is not taken into account 
in the balance equation of effective stress. The deformation equation can be described:

	 , ( ), 0ij j ij ij fσ αρδ′ + + = 	 (1)

where σij,j is the stress tensor and  fi – the volume force.

Gas seepage equation

The gas seepage equation including the gas ad/desorption process, can be  described [2]:
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Dynamic damage to the stiffness

The damage parameter, D, can be represented as a function of acoustic attenuation co-
efficient and strain rate. The law of damage development can be revealed through the evolution 
of α and ξ, and the dynamic damage of rock is judged jointly by the volume stress criterion and 
the maximum principal stress criterion [15]:
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where h is a constant, v ̄ = exp[–(16/9) βCd], v – the Poisson’s ratio, β – the constant, controlling 
material unloading and reloading behavior, cd – the crack density, kIC and C – the material’s 
toughness and the longitudinal wave velocity, respectively, ρ – the density, σH – the volume 
stress, and σt – the tensile strength.

Coal rock mass deformation model

The equation of coal and rock mass motion is expressed:
	 , ,( ) 0 ( , 1, 2)j ij j ij jS S F i jλ µ µ+ + + = = 	 (4)

where λ + µ is the elastic constant of Lame, F – the external load, and S – the displacement of 
the joint of coal and rock mass.

Equations (1)-(4) constitute a multi-physical coupling model of loose blasting.
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Numerical simulation

Physical model and boundary conditions

The schematic diagrams of borehole lay-out and the simplified 3-D numerical model 
are shown in fig. 1. The integral model is set as 10 m × 5 m × 7 m in the x-, y-, z-directions. The 
basic simulation parameters of gas drainage and loose blasting are listed in tab. 1.
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Figure 1. Schematic diagram of borehole layout and physical model of loose blasting 

Table1. Basic parameters of gas drainage and loose blasting simulation
Parameter Value Parameter Numerical value

Standard atmospheric pressure 0.1013 MPa Rock bulk density 2.5 × 103 kgm–3

Gas drainage negative pressure 5000 Pa Poisson’s ratio of coal 0.3
Coal density 1250 kgm–3 Elastic Modulus 1000 MPa

Adsorption gas volume 0.03817 m3kg–1 Porosity free from external forces 5.0%

Adsorption constant 7900 Pa–1 Residual porosity under 
high compression state 2.0%

Permeability stress  
sensitivity coefficient 5.0 × 10-8 Pa–1 Pressure coefficient  

of pore water 1.0

Gas dynamic viscosity 1.84 × 10–5 Pa·s Compression factor [kgm–3Pa–1] 1.18 × 10–5 kgm–3Pa–1

Original gas pressure 0.98 MPa Elastic Modulus 10000 MPa
Coal compressive strength 10 MPa Rock poisson 0.27

Coal compression ratio 15 Friction angle 38 ℃
Uniaxial compressive strength 200 MPa Pull-to-pressure ratio 8

Rock friction angle 30 ℃ Explosive gas static pressure 2275.91 MPa

Simulation results

In fig. 2, the broken area is described by blue and the loose area is described by green. 
Blasting is actually a complicated process of combustion and detonation. Since the expansion 
of gas with high pressure and high temperature generated by explosion, the damage of the sur-
rounding medium can take place. Due to the difficulty in simulating the actual blasting process, 
the equivalent bursting pressure of 2275.91 MPa is applied for simulation in radial direction. 
The loose blasting causes a loose zone with an influence range of about 1.2 m and a crushing 
zone with a range of 1.05 m around the blasting hole. These results show that loose blasting 
plays a role in preventing coal and gas outburst accidents.
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Figure 2. Damage distribution after loose blasting; (a) damage area, (b) damage distribution  
around borehole
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Figure 3. Elastic modulus and stress distribution along the longitudinal profile of the blasting hole;  
(a) elastic modulus, (b) stress cloud map
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Figure 4. Elastic modulus and stress profile along the control borehole; (a) elastic modulus  
(b) stress cloud map
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Figures 3 and 4 are the elastic modulus and stress distribution diagrams, which are 
along the longitudinal section of the blasting and control holes, respectively. As shown in  
fig. 3(b), the blue region in z-axis direction of normal stress is zero which is significantly larg-
er than the range  before the loose blasting. The maximum compressive stress is 36.51 MPa,  
and the maximum tensile stress is 4.525 MPa. The concentration stress of the coal wall is 
near the blasting hole. It can be seen from fig. 4(a) that the elastic modulus value of green 
area is 1000 MPa. In the region near the blasting hole, the elastic modulus reduces signifi-
cantly. 

Figure 5(a) shows the stress distribution in tensile lines above the blasting hole. The 
x-axis value in the 0-2.0 m width range belongs to the working face, and 2.0-10.0 m belongs 
to the coal seam. Due to the mining damage, the concentration stress in the coal seam is trans-
ferred to the inner part of the coal seam, therefore, the stress increases slowly in x-axial direc-
tion between 2.0 m and 2.5 m. Between 2.5 m and 9.0 m segment of x-axial, the stress in the 
z-direction increases significantly, stress reaches its peak when the x-axis value is 3.06 MPa. 
That is, under the mining conditions, the stress is the highest at 1.06 m from the working sur-
face, and the value is 38.95 MPa. Exceeding working face 9 m is regarded as the normal stress 
zone, and the stress of 11.86 MPa.
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Figure 5. Stress variation curves in tensile lines above the blasting and control holes; 
(a) the blasting hole, (b) the control hole

Figure 5(b) shows the stress distribution in tensile lines above the control hole. After 
the loose blasting, the range of the stree relief zone is between 2.0 m and 7.08 m in x-axial 
direction, where the stress change is about 1.0 MPa, and the concentration stress zone is be-
tween 7.33 m and 9.39 m in x-axial direction. When x-axis value is 7.53 m, namely exceeding 
working face 5.06 m, the positive stress in the z-direction reaches the peak value of 18.3 MPa. 
In the region of 3.31 m and 9.6 m in x-axial direction, there is a significant increase in z-stress 
gradient change of stress concentration zone, and the stress reaches its peak when the x-axis value is 
7.08 m in the z-axis direction. That is to say, the stress peak is generated at the position of 5.08 
m exceeding the working surface, and the value is 20.6 MPa.

From the comparison of the z-direction normal stress curve before and after blasting, 
it can be seen that the stress relief zone, the concentrated stress zone and primary stress zones 
can be produced in the front of the working face during mining. After loose blasting, the con-
centrated stress zone of the coal body moves backward, width of relief zone was increased, 
peak of normal stress in the z-axis direction was decreased, playing the role of preventing gas 
outburst accidents. It can be seen that the change of the stress peak makes the stress transfer to 
the deep zone between 3.5 m and 4.0 m before and after blasting, which enhances the ability 
of resisting the coal and gas outburst. It can be considered that the impact range of the blasting 
hole reaches between 3.5-4.0 m.  
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In-situ measurement

The blasting hole is ⌀42 m in diameter and 5.0 m in depth. The charge of each hole 
is between 4.0 and 6.0 coils/hole, the drilling direction of loose blasting is parallel to the coal 
seam and the QSJ-90A anti-drilling rig is used for drilling. The third-stage emulsion explosives 
allowed in the coal mine are selected. The length of each explosive is 0.5 m, the diameter of 
the grain is 0.06 m, each roll of explosives' weighs is 1.7 kg. The medicine roll is send to the 
charging position by the wooden cannon-stick with fired medicine (⌀0.055 m × 1.5 m). The 
MFB-100B type blasting device is used to detonate one charge and one detonated. The lay-out 
parameters of specific blasting and test holes are shown in the fig. 6.
Blasting hole Test hole

Coal seam

2.0 m 1.0 m 1.0 m

1# 2# 3# 4# 5#

Figure 6. The lay-out of test borehole by loose blasting

After drilling, the gas concentration of the borehole is continuously observed. Consid-
ering the measurement error of new borehole caused by the grounding stress and the construc-
tion disturbance, the loose blasting test for each borehole is carried out when the gas emission 
from the borehole is relatively stable, and the gas concentration of the borehole is tracked 
before and after drilling. The test period is 275 day. It can be seen from fig. 7 that after blasting, 
the gas concentration of hole (1#) and hole (2#) increases obviously, the hole (1#) increases from 
12.9-24.8%, and the hole (2#) from 9.5-23.5%. The average growth is 119.5%. At the same 
time, since the distance between the hole (1#) and hole (2#) is 0.5 m, the increase reaction time 
of the gas concentration is delayed, which can be seen from the hole (3#).

G
a

s 
co

n
ce

n
tr

a
ti

o
n

 in
 b

o
re

h
o

le
s 

[%
]

80

70

60

50

40

30

20

10

0
2017/1/4 2017/3/5 2017/5/4 2017/7/3 107/9/1 2017/10/31

Time [day]

Before blasting After blasting

Drill No. 1 (spacing 2.0 m)
Drill No. 2 (spacing 2.5 m)
Drill No. 3 (spacing 3.0 m)
Drill No. 4 (spacing 3.5 m)
Drill No. 5 (spacing 4.0 m)

Drill No. 1 (spacing 2.0 m)
Drill No. 2 (spacing 2.5 m)
Drill No. 3 (spacing 3.0 m)
Drill No. 4 (spacing 3.5 m)
Drill No. 5 (spacing 4.0 m)

After blastingBefore blasting

G
a

s 
ce

m
is

si
o

n
 f

ro
m

 b
o

re
h

o
le

s 
[L

m
in

]
−

1

27

24

21

18

15

12

9

6

3

Time [day]

2017/3/7 2017/4/16 2017/5/26 2017/7/5 2017/8/14 2017/9/23 2017/11/2
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The gas concentration of the hole (2#) can gain increase due to the blasting, while 
the gas concentration of hole (3#) increases slightly because of the 4.0 m distance between the 
hole (3#) and the blasting hole. The gas concentration of hole (3#) increases from 4.7-8.9%, 
which shows the hole (3#) is also affected by the blasting shock wave. The gas concentration 
of the hole (4#) and hole (5#) does not fluctuate, while the gas concentrations of the holes 
are continuously attenuated. During the subsequent continuous observation, there is still no 
abnormal gas emission. Therefore, it can be judged that it is not affected by the blasting. The 
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same change law of gas emission amount and its concentration in the borehole can also be 
found. Before and after blasting, the change of gas emission is obvious. With the increase 
of the distance from the blasting hole, the gas emission amount of hole (1#) and hole (2#) in-
creases significantly, however, hole (3#) has a small increase. The lag effect is also showing 
up among them. From the field test, the effective influence range of the blasting can be regard 
as between 3.0 m and 3.5 m.

Conclusion

In this work, the influence range of deep-hole loose blasting was simulating. The re-
sults show that the effective influence range of loose blasting reaches between 3.5 m and 4.0 m,  
which is verified by field test. Base on the simulation and on-site tracking test with the time of 
near 275 day, the stress relief and flow enhancement effect is obvious under the effect of loose 
blasting measures. The lag effect of gas migration is revealed during blasting. 
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Nomenclature

fi 	 – volume force, [Nm–3]
Qp 	– sink source term, [kgm–3s–1]
S 	 – displacement, [m]
v 	 – Poisson’s ratio, [–]

Greek symbols

σij 	 – stress tensor, [MPa]
σH	 – volume stress, [Nm–2]
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