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The present study examines the motion of a micropolar non-Newtonian Casson 
fluid through a porous medium over a stretching surface. The system is pervaded 
by an external uniform magnetic field. The heat transfer and heat generation are 
taken into consideration. The problem is modulated mathematically by a system 
of non-linear PDE which describe the equations of continuity, momentum, and 
energy. Suitable similarity solutions are utilized to transform the system of equa-
tion ordinary non-linear differential equations. In accordance with the appropriate 
boundary conditions, are numerically solved by means of the finite difference tech-
nique. Also, the system is solved by using multistep differential transform method. 
The effects of the various physical parameters, of the problem at hand, are illus-
trated through a set of diagrams.
Key words: micropolar Casson fluid, porous medium, finite difference method, 

multi-step differential transform method 

Introduction	

The theory of micropolar fluid has been a field of very active research because it 
takes into consideration the microscopic influences arising from the local structure and mi-
cro-motions of the fluid elements. The theory is expected to provide a mathematical model, 
which can be utilized to describe the behavior of non-Newtonian fluids such as liquid crys-
tals, polymeric fluids, paints, animal blood, Ferro liquids, colloidal fluids, etc. The concept of 
simple micro-fluids to characterize concentrated suspensions of neutrally buoyant deformable 
particles in a viscous fluid where the individuality of substructures affects the physical out-
come of the flow was discussed by Eringen [1]. Such fluids models can be used to rheolog-
ical describe normal human blood, polymeric suspensions, etc. Also, they have found appli-
cations in physiological and engineering problems. Ali and Hayat [2] carried out a study of 
peristaltic motion of an incompressible micropolar fluid in an asymmetric channel, the flow 
analysis has been developed for low Reynolds number and long wavelength case. Also, they 
compared the results for micropolar fluid with those for Newtonian fluid. The influences of 
thermal radiation on MHD axisymmetric stagnation point flow and heat transfer of a micropo-
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lar fluid over a shrinking sheet was discussed by Shahzad, et al. [3]. In another paper, Eldabe,  
et al. [4] studied MHD peristaltic flow with heat and mass transfer of micropolar biviscosity flu-
id through a porous medium between two co-Axial tubes. They obtained the effects of physical 
parameters on Nusselt number and Sherwood number. Nazeer et al. [5] discussed the numerical 
simulation of MHD flow of micropolar fluid inside a porous inclined cavity with uniform and 
non-uniform heated bottom wall. Free convective micropolar fluid-flow and heat transfer over 
a shrinking sheet with heat source was delineated by Mishra et al. [6]. For more details and 
thermos physical properties of micropolar fluid see ref [7-12].

Flow through a porous medium has several practical applications especially in geo-
physical fluid dynamics. Examples of natural porous media are sandstone, beach sand, the 
human lung, limestone, bile duct and gall bladder with stones in small blood vessels. Eldabe,  
et al. [13] constructed heat and mass transfer of MHD pulsatile flow of Casson fluid with couple 
stress through porous medium. Mekheimer [14] delineated the non-linear peristaltic transport 
through a porous medium in an inclined planar channel. Zueco and Ahmed [15] discussed the 
combined heat and mass transfer by mixed convection MHD flow along a porous plate with 
chemical reaction in presence of heat source, and they found that the flow velocity, the fluid 
temperature, and the induced magnetic field decrease with the increase in the destructive chem-
ical reaction. In another paper, El-Dabe et al. [16], scrutinized the influence of partial slip on 
peristaltic flow of a Sisko fluid with mild stenosis through a porous medium and found that the 
Darcy’s coefficient of the fluid restrains the velocity.

The Casson fluid model is used to predict blood flow in arteries at very low shear rate. 
Also, it utilized in perception flow behavior of pigment oil suspensions of the printing ink type. 
The shear stress-shear rate relation given by Casson satisfactorily describes the properties of many 
polymers over a wide range of shear rates [17]. A numerical investigation of micropolar Casson 
fluid over a stretching sheet with internal heating was reported by Mehmoo et al. [18]. Impact of 
inclined magnetic field on micropolar Casson fluid. Further, the influence of inclined magnetic 
field on micropolar Casson fluid using Keller box algorithm was studied by Iqbal et al. [19].

The study of stagnation point flow was pioneered by Hiemenz [20]. A flow can be 
stagnated by a solid wall, a free stagnation point or a line can exist in the interior of the fluid 
domain Shateyi and Makinde [21]. Bhattacharyya et al. [22] scrutinized the effects of par-
tial slip on steady boundary-layer stagnation-point flow of an incompressible fluid and heat 
transfer towards a shrinking sheet. The relevance of this study attracted Motsa et al. [23] to 
formulate mathematical equation governing Maxwell fluid for 2-D stagnation flow towards a 
shrinking sheet and analyzed the flow behavior extensively using similarity variables together 
with successive linearization method. Javed and Ghaffari [24] addressed the numerical study of 
non-Newtonian Maxwell fluid in the region of oblique stagnation point flow over a stretching 
sheet. Mustafa et al. [25] scrutinized the heat transfer in MHD stagnation point flow of a fer-
rofluid over a stretchable rotating disk. Further, the heat transfer analysis of unsteady oblique 
stagnation point flow of elastico-viscous fluid due to sinusoidal wall temperature over an oscil-
lating-stretching surface: A numerical approach was deliberated by Ghaffari et al. [26].

Internal energy generation can be explained as a scientific method of generating heat 
energy within a body by a chemical, electrical or nuclear process. Natural-convection induced 
by internal heat generation is a common phenomenon in nature. Example includes motion in 
the atmosphere where heat is generated by absorption of sunlight [27]. Crepeau and Clarksean 
[28] carried out a similarity solution for a fluid with an exponential decaying heat generation 
term and a constant temperature vertical plate under the assumption that the fluid under con-
sideration has an internal volumetric heat generation. In many situations, there may be appre-
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ciable temperature difference between the surface and the ambient fluid. This necessitates the 
consideration of temperature dependent heat sources that may exert a strong influence on the 
heat transfer characteristics, (see Salem et al. [29]. In another paper, El-Aziz and Salem [30] 
has stated that exact modelling of internal heat generation/absorption is quite difficult and ar-
gued that some simple mathematical models can express its average behavior for most physical 
situations. Muhammad et al. [31] debated the rotating flow of magneto hydrodynamic carbon 
nanotubes over a stretching sheet with the impact of non-linear thermal radiation and heat gen-
eration/absorption. For more details and application in this direction see [32-37].

The micropolar casson fluid problems with heat generation and porous medium are 
modeled by a set of coupled non-linear PDE, combined with the geometrical complexity of 
these problems which makes analytical or closed form solutions virtually impossible to obtain. 
Therefore, a substantial amount of research work has been invested in order to obtain satis-
factory solutions. The present investigation uses the finite difference methods (FDM) as well 
as the multi-step differential transformed method (Ms-DTM) methods to overcome the highly 
non-linear terms that appear in micropolar Casson fluid models. The Ms-DTM method accel-
erates the convergence of the series solution over large region and yields a series solution, this 
series will be truncated due to the required accuracy of solutions. This modified technique is 
verified through illustrative examples of non-chaotic or chaotic systems by Odibat, et al. [38]. 
Further, to get more accurate results Zait et al. [39], studied the statistical measures approxi-
mations for the Gaussian part of the stochastic non-linear damped Duffing oscillator solution 
process under the application of Wiener Hermite expansion linked by the Ms-DTM. The FDM 
is proposed by Courant et al. [40] in 1928. The FDM are numerical methods that give a solution 
the differential equations by approximating them with difference equations [41]. In another pa-
per, Thomee [42] introduced a short history of numerical analysis of PDE to finite differences 
and finite elements.

The aim of the present work is to extend the work of Motsa et al. [23], to include 
the motion of micropolar Casson fluid in a porous medium. A detailed comparison between  
Ms-DTM and FDM methods is made to show an agreement between them. Moreover conclud-
ing remarks are summarized in the last section.

Mathematical formulations

It is convenient to use the Cartesian co-ordinates in 2-D, say x, y. The temperature at 
the stretched plane y = 0 is taken as Tw. Meanwhile, the temperature at ∞ is referred by T∞, see 
fig. 1. A uniform magnetic field B0 is acted upon the negative direction of the x-axis.

The constituting equations of continuity, conservation momentum, angular momen-
tum, and energy with compressibility conditions are summarized [15, 20, 29]:
–– continuity equation

0
 
u u
x y

∂ ∂
+ =

∂ ∂ (1)

–– the conservation momentum yields
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–– the angular momentum equation
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–– finally, the energy equation given

( ) ( )
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(4)

It is convenient to consider the appropriate boundary condition [3]:

, 0, , , at  0w
uu ax v N n T T y
y
∂

= = = − = =
∂

(5)

( ) , 0, , as u x bx N T T y∞= → → →∞ (6)
where µ is the dynamics viscosity, k – the thermal diffusivity, ρ – the fluid density, N – the 
microrotation vector (or angular velocity), µ – the spin gradient viscosity, γ – the electric con-
ductivity, K – the dimensionless velocity ratio parameter, B0 – the strength of magnetic field,  
n – the b89 the Darcy permeability.

To simplify the analysis of solutions for the previous equations. It is convenient to 
consider the following procedure:
–– the similarity is useful to convert the partial differential equation ODE,
–– the dimensionless quantities are very important to provide the characteristic dimensionless 

number with its useful:

( ) ( ) ( ) ( )
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Thus, eqs. (2)-(4) becomes: 
–– momentum yields

( )( )2 2 2 211 Ha 0k f ff f Kg S C f
µ β
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–– the angular momentum equation

( )1 2 0g fg f g K g f′′ ′  ′+ + − ′
 

′− = (10)

–– finally, the energy equation given
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β
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The corresponding boundary conditions become:

( ) ( ) ( )0 0, 0 1,  f f f C′ ′= = ∞ = (12)

( ) ( ) ( ) ( ) ( )0 1, 0, 0 0 , 0g nf gθ θ= ∞ = − ′ ∞ =′ (13)

where Ha2 = σeB0
2/ρa is the Hartmann number, S = 1/(Da)1/2 is the porous medium shape factor 

parameter, Pr = µcp/k0 – the Prandtl number, Ec = U 2/ΔTcp – the Eckert number, and B = Q/aρcp 
is the dimensionless heat generation/absorption parameter.
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Multi-step differential equation method
Using similar arguments as given by [38]. The equations of motion as mentioned in 

(9)-(11) with the appropriate boundary conditions eqs. (12) and (13) are transformed:
–– conversation of momentum yields

( )( )( ) ( ) ( ) ( )
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–– the angular momentum equation gives
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–– finally, the energy equation is given
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where F[k], G[k], and θ[k] are the differential transformation functions of  f  [η], g[η], and θ[η], 
respectively. The differential transform of the related boundary conditions are given by, respec-
tively. The differential transform of the associated boundary conditions are given:

[ ] [ ] [ ] [ ] [ ]
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(17)

By substituting from eq. (17) in eqs. (14)-(16), we obtain series of solutions to the 
velocity, microrotation and temperature distributions. They are achieved with the aid of MATH-
EMATICA 10 software.

Finite difference method

The implicit FDM is used to solve eqs. (9)-(11), see [42], subject to the boundary 
conditions of eqs. (12) and (13). This scheme is unconditionally stable and gives a better accu-
racy. We use a FDM to solve a system of differential eqs. (9)-(11). We reduce the order of these 
equations with the help of the substitution q = f ′:
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Subject to the boundary conditions (10) which become:
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The system of non-linear differential eqs. (18) and (20) are solved under the boundary 
conditions which are given by eq. (21):

( )( )2 21 1
2

1 1 1 1

211 Ha

0
2 2

i i i
i i

i i i i
i i i

q q qk S C q q

q q g g
f q q K

µ β
− +

+ − + −

  − + + + + + − +   
  

− −   
+ − + =   ∆ ∆  

∆


(22)

1 1 1 1
2

1 1

2
1

2 2

2 0
2

i i i i i
i i i

i i
i

g g g g gK f q g

q q
K g

− + + −

+ −

− + −    + + − −     ∆     
 − − + =  ∆

∆


  

(23)

( )

2
1 1 1 1 1 1

2

2

21 1Ec 1
P 2 2

Ha 0

r
i i i i i i

i

c i i i

q q
f

E C q q B

θ θ θ θ θ
β

θ

− + + − + −− + −   −     + + +      ∆ ∆      

+ − +

+

=

∆

(24)

Results and discussion

 This section is devoted to discuss the solutions by the aforementioned two meth-
ods, Firstly, the multi-step differential equation and secondly, FDM. After that a comparison 

between these two methods is computed, and 
offered in the following subsection.

Comparison between  
two numerical methods

The present investigation is used the 
FDM as well as the Ms-DTM methods. A 
detailed comparison between those methods 
was made to show agreement between them 
through figs. 1-3 and tab. 1. It is noticed from 
figs. 2-4. that the solutions of velocity, micro-
rotation and temperature profiles evaluated 

y ∞

B
0

Tw

y = 0

0

x

v

u

Figure 1. Physical flow diagram
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by using DTM accept the behavior of numeri-
cal solution till a point Q, and then it diverges. 
So we utilize the Ms-DTM and FDM methods, 
those provide the solutions in terms of conver-
gent series over a sequence of subintervals. 
In fact, our results indicate a close agreement 
between the FDM and Ms-DTM as shown in 
figs. 2-4 and tab. 1. Thereafter, the influences 
of physical parameters (the Casson parameter, 
β, the Hartmann number, Ha, the porous medi-
um shape factor parameter, S, and the dimen-
sionless heat generation/absorption parameter, 
B, on the velocity f(η), microrotation, g(η), and 
temperature profile, θ(η), by using Ms-DTM 
are illustrated through figs. 5-14. At what fol-
lows, the numerical estimations concern with 
the method of Ms-DTM, the target now is find the influences of various parameter for the 
previous distributions.

For the velocity profile

Figures 5-7 are displayed to visualize the effect of various parameter on velocity pro-
file. The calculation shows the following results: 
–– It is seen from figs. 5 and 6 that an increase in Casson parameter and Hartmann number 

causes on the velocity profile. Molecules of fluid cannot move easily without more energy. 
–– It is evident from the fig. 7 that an increase in porous medium shape factor parameter S 

causes an enhancement on the velocity profile. 
–– It is noted that the velocity profile have a slight difference for varying values of porous me-

dium shape factor parameter S.
–– It should be noted that the value of S = 1, the profile of the velocity distribution seems to be 

a straight line.
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Figure 2. Behavior of velocity profile f(η) 
against η for values K = 0.1, Ha = 0.3, Pr = 1,  
B = 0.7, β = 0.3, S = 0.1, Ec = 0.2, n = 1

Figure 3. Behavior microrotation profile g(η) 
against η for values K = 0.1, Ha = 0.3, Pr = 1,  
B = 0.7, β = 0.3, S = 0.1, Ec = 0.2, n = 1
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Figure 4. Behavior of temperature profile θ(η) 
against η for values K = 0.1, Ha = 0.3, Pr = 1, 
B = 0.7, β = 0.3, S = 0.1, Ec = 0.2, n = 1
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Table 1. Comparison between two numerical methods on a micropolar Casson fluid 
problem at K = 0.1, Ha = 0.3, Pr = 1, B = 0.7, β = 0.3, S = 0.1, Ec = 0.2, n = 1
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Figure 5. Behavior of velocity profile f(η)  
against η for several values K = 0.1, Ha = 0.3,  
Pr = 1, B = 0.7, S = 0.1, Ec = 0.2, n = 1

Figure 6. Behavior of velocity profile f(η)  
against η for several values K = 0.1, Pr = 1,  
β = 0.7, S = 0.1, Ec = 0.2, n = 1

Figure 7. Behavior of velocity profile f(η) 
against η for several values K = 0.1, Ha = 0.3,  
Pr = 1, B = 0.7, β = 0.2, Ec = 0.2, n = 1

Figure 8. Behavior of microrotation profile g(η) 
against η for several values K = 0.1, Ha = 0.3,  
Pr = 1, B = 0.7, S = 0.2, Ec = 0.2, n = 1
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Figure 9. Behavior of microrotation profile g(η) 
against η for several values K = 0.1, Pr = 1,  
B = 0.7, β = 0.2, S = 0.2, Ec = 0.2, n = 1

Figure 10. Behavior of microrotation profile g(η) 
against η for several values K = 0.1, Ha = 0.3,  
Pr = 1,  B = 0.7, β = 0.2, Ec = 0.2, n = 1
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For the microrotation profile graphed

Figures 8-10 are displayed to visualize the effect of various parameter on microrota-
tion profile. the numerical calculations draw the following results:
–– The impact of β and Ha are portrayed in figs. 8 and 9. It is show that the higher values of β 

and enhances the microrotation profile.
–– The increasing of S on microrotation profile g(η) increases as in fig. 10.

For the temperature profile graphed

Figures 11-14 disclosed the impact of β, Ha, S, and B on the temperature profile:
–– The behavior of β and Ha on the temperature θ(η) are depicted in figs. 11 and 12. Here the 

effect of increasing β and Ha that leads to an increase in temperature profile.
–– The fluid temperature at increases with the  increase of the heat generation parameter B, as 

shown in fig. 13.
–– Larger S reduces θ(η) which results in argumentation of heat transfer at the wall as shown 

in fig. 14.
–– It is noted that the temperature profile has a sight difference for various values of S.
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Figure 11. Behavior of temperature profile θ(η) 
against η for several values K = 0.1, Ha = 0.3,  
Pr = 1, B = 0.7, S = 0.2, Ec = 0.2, n = 1

Figure 12. Behavior of temperature profile
 
θ(η) 

against η for several values K = 0.1, Pr = 1,  
B = 0.7, β = 0.2, S = 0.2, Ec = 0.2, n = 1

Figure 13. Behavior of temperature profile θ(η) 
against η for several values K = 0.1, Ha = 0.3,  
Pr = 1, β = 0.2, S = 0.1, Ec = 0.2, n = 1

Figure 14. Behavior of temperature profile
 
θ(η) 

against η for several values K = 0.1, Ha = 0.3,  
Pr = 1, B = 0.7, β = 0.2, Ec = 0.2, n = 1
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Conclusions

The current paper investigates an incompressible micropolar Casson fluid over a 
stretching surface. Porous medium and heat generation are taken into consideration. The gov-
erning equations of motion are analytically solved through Ms-DTM to obtain the distribution 
of velocity, microrotation and temperature. The Ms-DTM are applicable to non-linear models 
such as micropolar Casson fluid models which is more complicated and have a higher degree of 
non-linearity, in a direct way without using linearization or restrictive assumptions. The veloci-
ty, microrotation in space-time domain and temperature are obtained for different times and for 
various values of material parameters using a Ms-DTM. The investigation draws the following 
concluding remarks.

yy The influences of β and Ha on f ′(η) are similar in a qualitative sense.
yy Temperature and microrotation are reduced for higher values of S. 
yy At S = 1, it is seen that no variation for the velocity and microrotation parameter profiles. 

Therefore, they graphed a horizontal straight line.
yy The advantage of the Ms-DTM is to make a linearization for the non-linear system. There-

fore, away from any other methods, we can easily solve the problem.
yy An accuracy comparison is made between the methods of FDM and Ms-DTM. This compar-

ison shows that the error between them is efficiently small.

Nomenclature

B 	 – dimensionless heat generation /absorption 
parameter

B0	 – a uniform magnetic field 
cp 	 – specific heat at constant pressure
Da 	 – Darcy number 
Ec 	 – Eckert number
Ha 	 – Hartmann number
K 	 – dimensionless velocity ratio parameter
Kd	 – Darcy permeability
k 	 – thermal diffusivity
Pr 	 – Prandtl number

S 	 – porous medium shape factor parameter
N 	 – microrotation vector
n 	 – boundary concentration parameter of fluid
T∞	 – temperature at infinity
Tw	 – temperature at the stretched plane

Greek symbols

γ	 – electric conductivity
µ 	 – spin gradient viscosity
ρ 	 – fluid density
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