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In this article, some new properties of a novel integral transform termed the Fou-
rier-Yang are explored. The Fourier-Yang integral transforms of several basic
functions are given firstly. With the aid of the new integral transform, a 1-D wave
equation and 2-D heat transfer equation are solved. The results show that the Fou-
rier-Yang integral transform is efficient in solving PDE.
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Introduction

Integral transforms have been applied to solving the key issues involving mechan-
ics, chemistry, physics, thermal science, and interdisciplinary areas [1, 2]. For example, the
Laplace integral transform plays the important role in transient thermal stresses [3], fluid me-
chanics [4], and viscoelastic fluids [5]. The Fourier integral transform has become the powerful
tool in solving the volume integral equations and the Cauchy integral equation [6-8], and the
Sumudu integral transform was utilized to solve PDE in [9-11].With the development of the
integral transform, some new integral transforms, such as the Elzaki transform [12, 13], the
Fourier-Yang transform [14, 15], and the Laplace-Carson transform [16], were also suggested
to solve more differential equations. Recently, a new Fourier-like integral transform adopted
to deal with a steady heat transfer problem is given [17]. However, the properties of the new
integral transform are incomplete, and it has not been employed to solve the wave and the 2-D
heat transfer equations.

This paper aims to extend some new properties of the Fourier-Yang integral transform
and give the integral transform of some basic functions. Moreover, the PDE proposed in the 1-D
wave and the 2-D heat transfer problems are solved by the technique of the integral transform
for the first time.

The Fourier-Yang integral transfor

In this section, the definitions of the Fourier integral transform and the Fourier-Yang
integral transform are recalled, some new properties of the Fourier-Yang integral transform are
given firstly. In addition, the integral transforms of some functions are defined.
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The Fourier integral transform of the function ¢(7) is denoted as [18]:
(0]=[o(r)e (1)

where o is a constant, and F represents the Fourier integral transform operator.
The inverse Fourier integral transform is given as [18]:

)=27" =—
o()=2"To(n]=5-]
where F! represents the inverse Fourier integral transform operator.

The Fourier-Yang integral transform of the function ¢(¢) is shown as [19]:

(m)=Z[(t) ]——j )e " dt 3)

@(n)ne™dn ()

where 7 is a real-valued constant, Z represents the Fourier-Yang integral transform operator.
The inverse Fourier-Yang integral transform is given by [19]:

=z [co(n)]=2+yj¢7(n)ne”‘dn (4)

where Z! represents the inverse Fourier-Yang integral transform operator.
Substituting eq. (3) into eq. (4), we have the integral criterion as:

o(t)=2"[@(n ]—%xn{ j e””dt}e””dl] (5)

The properties of the Fourier-Yang integral transform are as:
(T1) - ¢p(w) = Flp(?)] and &(n) = Z[¢(?)], then we have:

o(w)=n2(n) (6)
?(n)=—0(0) )
(T2) — B(y) = Z[p(1)] and () = Z[¥(1)] then we have:
Z[ ap(t)+b¥ (1) | =a®(n)+b¥(n) (8)
where a and b are the constants.
(T3) — D) = Z[p(1)], then we have:
2[p(t-a)]=ed(n) ©)
where a is a constant.
(T4) — ®() = Z[p(1)], then we have:
Z{dzgt)}:jnqj(n) (10)

(TS) — @(n) = Z[p(?)], then we have:

Z{Tgo(t)dt}:ﬁ@(n) (11)
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(T6) — @'(n) =dD()/d(n) hen we have:
@’(n)=—%@(n)—m@(n> (12)

(T7) — D(n) = Z[p(t)] and ¥(n) = Z[W(¢)], then we have the Fourier-Yang integral transform
of convolution:

Z{J‘¢7(t—r)‘l’(z’)dt}:n‘l’(77)@(n) (13)
(T8) Let p(¢) = e “v(t), where () is the Heaviside unit step function [18]. Then:
1
D(n)=— 14
)= 7 (14)

where a is a constant.
(T9) Let p(¢) = 6(¢), where d(¢) is the Dirac function. Then:

1

@(n) - (15)
(T10) Let (t) = {(f | t1|< g where C and T are constants. Then:
else
Z[ J 2sin ( 77T) (16)
7’
(T11) Let o(¢) = ve™’, k > 0, where v is a constant. Then:
on -
Zlp(t)|= e ¥ 17
[(0( ﬂ U\/E (17)
Proof.
(T1) Taking @ = 5 in egs. (1) and (3), we obtain:
—jot 1 i —Jjnt
F[go J _" Joldy = L] jqo(t)e 1 dt}zn@(n) (18)
,1 7 —Jnt 44— 15 —Jjot 34 _
@(n)—;jq)(t)e dt—;_‘-(p(t)e dt = ¢p(w) (19)
(T2) h -
Zap(t)+b¥ ()] =~ [ ap(r)e"dr+~ Ib‘l’ edr=ad(n)+0¥ () (20)
n= m=,
(T3)
Zp(t-a)]== [ p(t-a)e " dr @1
’7 —00
If t =t — a, then:
17 o 1% . )
— | p(t)e/™e™dt =" — | p(t)e"dt =" D (n (22)
Lol Lot )

(T4)

d d - [e
Z{ ¢(t):|:%L%e—mtdt:%£e—1ntd¢(t):jndj(ﬂ) (23)
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Similarly, we have:
d"o(t
Z[ o )}J"n"@(n) (24)
where 7 is the positive integer.
(T5)
o0 1 o0 o0
p(t)dt |=— o(t dt}e””dt——d7 n 25
2| [otar|=1 ]| o Lo 2
Similarly, we have:
ZD---I@(z)dr}: @ () (26)
1 n
(T6)
1% . T . 1 .
:—? I otk dt—]jgo(t)e " dt =—;@(7])—]7]@(1]) (27)
(T7) - -
Z| | o(t—7 dt [=— | ¥(2)| | @(t-7 e"’”tdt}dr 28
{Jw()()}njw )\ Jote-s) @
If 2 =t—r1, then:

77*00

Similarly, we have:

—00 —00

2 [Jolo-sue

0

— J. ¥(r {J. _’“”)"di}dr =%T ‘I’(r)e"”"dr_[ p(A)edi=n¥ (n)e(n) (29)

—00

V¥ (7,7, ) de } Y (n.1,) @(1.1,) (30)

(T8) If the Heaviside unit step function [18] is

[#(e)v(r)r=[g(c)de 31)
then: -
=Z[o(1)]= L T e*“’v(t)e*”’dt=lTe*<“”")‘dt S —C |7 = — L @
n e, % n(a+jn) n(a+jn)
(T9) If the Dirac function is:
5(T-c)={;o’ :Z [8(z=c)f(r)dr=1(c) (33)
then: -
@ (n)=2[p(t)] = % [ 5(r)ewdt:% (34)
(T10) -
Z[gp(t)}z%jCcos(nt)dt:zsmn—(znT) (3%)
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(T11)
w w | _gfeedn) 1
%(n)= 1 j ve e mdr =Y I e{ [ ij 4Jdt (36)
77 —00 77 —00
If t =t + jn/2k, then we get:
n” ® n
Zlve |=Le 4 [t qr=—T ¢ 4 37
[ ] n ,J; n\/ﬁ
where:
fera= [t (%)
b k
Applications

Solving the 1-D wave equation

In this section, with the help of the Fourier-Yang integral transform, the analytical
solution of the 1-D wave equation is shown:
The mathematical model of 1-D wave equation is defined [20]:

2 2
Tolnt) 200000 o (e icmis0) (39)
ot Ox
where A is a constant.
The initial conditions are given by:
0
p(x,0)=8(x), a‘/’g’;’ )0 (40)

Using the egs. (3) and (24), the Fourier-Yang integral transforms of eq. (39) with
respect to x are given:

0*d(n,t
65277 )+/12772¢7(77,t)=0 (41)
Similarly, the initial conditions becomes:
oD(n,0
@(7.0)=9(n). %zo (42)

Making use of eqs. (41) and (42), we have:
Z(U,t):g(n)cos(}n]t) (43)
Substituting eq. (43) into eq. (4), and with the help of eq. (9), we obtain:

p(x,t)=2" [@(n,t)] = % T n9(n)cos(Ant)e™dn = %[S(X—/lt)—i- I(x+ /lt)] (44)

the solution of eq. (44) is identical to the result [20].

Solving the 2-D heat transfer equation
The PDE in the 2-D heat transfer problem is:

Op(x.7.1) | To(xyt) Co(xp.1)
ot o’ oy’

=0, (—oo<x,y<oo,t>0) (45)
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where « is the thermal conductivity.
The initial condition is:

(p(x,y,O) = S(x,y) (46)

Combining eqgs. (3) and (24) yields the Fourier-Yang integral transforms of eq. (45)
with respect to x and y expressed:

oD (m,,n,,t
%‘FKJ(’AZ+7]22)@(771’772’t):0 47)
Similarly, the initial conditions is:
@(7719’7230):‘9(7713772) (48)
From eqs. (47) and (48), we have:
47(771:’7271)277177219(?71,772)‘1’(771,772) (49)
where
1 1 —-K* l]2+ 22 I
W ()=~ (50)
1772
Utilizing eqs. (4) and (37), the inverse Fourier-Yang integral transform of eq. (50) is
written:

2 2 —(xz+y2)
pliteren] [ EST L EEL LS,
mm, 2nx V¢t 2nx \ ¢t dni’t

Substution of egs. (50) and (51) into eq. (30), we have the analytical solution of the
2-D heat transfer problem as:
=) +(r-n.)’ |

D (x,y,1) 41Uc2t j ju9 (r,7,)e  *"  drdr, (52)

Conclusion

In this work, some new properties of the Fourier-Yang integral transform are extend-
ed firstly, and the integral transforms of some functions are given. Applying those, we obtain
the analytical solutions of the differential equations in the 1-D wave and the 2-D heat transfer
problems. The results indicate that the Fourier-Yang integral transform is effective and precise
in solving the partial differential equations.

Nomenclature

t —time, [s] Greek symbols
X,y —space co-ordinate, [m] A — wave propagation rate, [ms™]

x — thermal conductivity, [Wm2K]
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