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In this article, some new properties of a novel integral transform termed the Fou-
rier-Yang are explored. The Fourier-Yang integral transforms of several basic 
functions are given firstly. With the aid of the new integral transform, a 1-D wave 
equation and 2-D heat transfer equation are solved. The results show that the Fou-
rier-Yang integral transform is efficient in solving PDE.
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Introduction

Integral transforms have been applied to solving the key issues involving mechan-
ics, chemistry, physics, thermal science, and interdisciplinary areas [1, 2]. For example, the 
Laplace integral transform plays the important role in transient thermal stresses [3], fluid me-
chanics [4], and viscoelastic fluids [5]. The Fourier integral transform has become the powerful 
tool in solving the volume integral equations and the Cauchy integral equation [6-8], and the 
Sumudu integral transform was utilized to solve PDE in [9-11].With the development of the 
integral transform, some new integral transforms, such as the Elzaki transform [12, 13], the 
Fourier-Yang transform [14, 15], and the Laplace-Carson transform [16], were also suggested 
to solve more differential equations. Recently, a new Fourier-like integral transform adopted 
to deal with a steady heat transfer problem is given [17]. However, the properties of the new 
integral transform are incomplete, and it has not been employed to solve the wave and the 2-D 
heat transfer equations.

This paper aims to extend some new properties of the Fourier-Yang integral transform 
and give the integral transform of some basic functions. Moreover, the PDE proposed in the 1-D 
wave and the 2-D heat transfer problems are solved by the technique of the integral transform 
for the first time. 

The Fourier-Yang integral transfor

In this section, the definitions of the Fourier integral transform and the Fourier-Yang 
integral transform are recalled, some new properties of the Fourier-Yang integral transform are 
given firstly. In addition, the integral transforms of some functions are defined.
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The Fourier integral transform of the function φ(t) is denoted as [18]:

 ( ) ( ) ( )e dj tF t t tωΦ ω ϕ ϕ
∞

−

−∞

= =   ∫  (1)

where ω is a constant, and F represents the Fourier integral transform operator.
The inverse Fourier integral transform is given as [18]:

 ( ) ( ) ( )1 1 e d
2

j tt
j

∞
−

−∞

= =   π ∫

ηϕ ϕ η ϕ η η η  (2)

where F–1 represents the inverse Fourier integral transform operator.
The Fourier-Yang integral transform of the function φ(t) is shown as [19]:

 ( ) ( ) ( )1= = e dj tt t tηΦ η ϕ
η

∞
−

−∞

Σ   ∫  (3)

where η is a real-valued constant, ℤ represents the Fourier-Yang integral transform operator.
The inverse Fourier-Yang integral transform is given by [19]:

 ( ) ( ) ( )1 1 e d
2

j tt
j

∞
−

−∞

= =   π ∫

ηϕ ϕ η ϕ η η η  (4)

where ℤ–1 represents the inverse Fourier-Yang integral transform operator.
Substituting eq. (3) into eq. (4), we have the integral criterion as:

 ( ) ( ) ( )1 1 1 e d e d
2

j t j tt t tη ηϕ Φ η η ϕ η
η

∞ ∞
−

−∞ −∞

 
= =     π  

∫ ∫  (5)

The properties of the Fourier-Yang integral transform are as:
(T1) → φ(ω) = F [φ(t)] and Φ(η) = ℤ[φ(t)], then we have:
 ( ) ( )ϕ ω ηΦ η=  (6)

 ( ) ( )1Φ η ϕ ω
ω

=  (7)

(T2) → Φ(η) = ℤ[φ(t)] and Ψ(η) = ℤ[Ψ(t)] then we have:
 ( ) ( ) ( ) ( )a t b t a bϕ Φ η η+ Ψ = + Ψ    (8)

where a and b are the constants.
(T3) → Φ(η) = ℤ[φ(t)], then we have:
 ( ) ( )e j at a− =  

ηϕ Φ η  (9)

where a  is a constant.
(T4) → Φ(η) = ℤ[φ(t)], then we have:
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t
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ϕ
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= 
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(T5) → Φ(η) = ℤ[φ(t)], then we have:

 ( ) ( )1d =t t
j

ϕ Φ η
η
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∫  (11)
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(T6) → Φ′(η) =dΦ(η)/d(η) hen we have:

 ( ) ( ) ( )1 jΦ η Φ η ηΦ η
η

′ = − −  (12)

(T7) → Φ(η) = ℤ[φ(t)] and Ψ(η) = ℤ[Ψ(t)], then we have the Fourier-Yang integral transform 
of convolution:

 ( ) ( ) ( ) ( )d =t tϕ τ τ η η Φ η
∞

−∞

 
− Ψ Ψ 

 
∫  (13)

(T8) Let φ(t) = e–atv(t), where v(t) is the Heaviside unit step function [18]. Then:

 ( ) ( )
1

a j
Φ η

η η
=

+
 (14)

where a  is a constant. 
(T9) Let φ(t) = δ(t), where δ(t) is the Dirac function. Then:

 ( ) 1Φ η
η

=  (15)

(T10) Let ( )
| |

0 else
C t T

tϕ
<

= 


where C and T are constants. Then:

 ( ) ( )
2

2sin T
t

η
ϕ

η
=  

 (16)

(T11) Let φ(t) = υe–kt2, k > 0, where υ is a constant. Then:

 ( )
2

4e kt
k

ηυϕ
η

−π
=   π

  (17)

Proof. 
(T1) Taking ω = η in eqs. (1) and (3), we obtain:

 ( ) ( ) ( ) ( ) ( )1e d e dj t j tF t t t t tω ηϕ ω ϕ ϕ η ϕ ηΦ η
η

∞ ∞
− −
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= = = =    

 
∫ ∫  (18)
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=∫ ∫  (19)

(T2) 
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η η

∞ ∞
− −

−∞ −∞
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(T3) 
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If t = t – a, then:
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Similarly, we have:
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d
d

n
n n

n

t
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where n is the positive integer.
(T5)
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Similarly, we have:
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1

1d n n
n

t t
j

ϕ Φ η
η
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(T6) 
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ηη

∞ ∞
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(T7) 
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If λ = t – τ, then:

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1e d d e d e d =j j jλ τ η τη λητ ϕ λ λ τ τ τ ϕ λ λ η η ϕ η
η η
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Similarly, we have:

 ( ) ( ) ( ) ( )1 1 2 2 1 2 1 2 1 2 1 2 1 2, , d d , ,t t t tϕ τ τ τ τ ηη η η ϕ η η
∞ ∞

−∞ −∞

 
− − Ψ = Ψ 
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(T8) If the Heaviside unit step function [18] is:

 ( ) ( ) ( )
- 0

d dt t t t tφ ν φ
∞ ∞

∞

=∫ ∫  (31)

then:
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( )
( )
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0
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(T9) If the Dirac function is: 
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then:
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(T11) 
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If t = t + jη/2k, then we get: 
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where:

 2

e dkt t
k

∞
−

−∞

π
=∫  (38)

Applications 

Solving the 1-D wave equation

In this section, with the help of the Fourier-Yang integral transform, the analytical 
solution of the 1-D wave equation is shown:

The mathematical model of 1-D wave equation is defined [20]:

 ( ) ( ) ( )
2 2

2
2 2

, ,
0, , 0

x t x t
x t

t x
ϕ ϕ

λ
∂ ∂

− = −∞ < < ∞ >
∂ ∂

 (39)

where λ is a constant.
The initial conditions are given by:

 ( ) ( ) ( ),0
,0 , 0

x
x x

t
ϕ

ϕ ϑ
∂

= =
∂

 (40)

Using the eqs. (3) and (24), the Fourier-Yang integral transforms of eq. (39) with 
respect to x are given:

 ( ) ( )
2

2 2
2

,
, 0

t
t

t
Φ η

λ η Φ η
∂

+ =
∂

 (41)

Similarly, the initial conditions becomes：

 ( ) ( ) ( ,0),0 , 0
t

Φ ηΦ η ϑ η ∂
= =

∂
 (42)

Making use of eqs. (41) and (42), we have:
 ( ) ( ) ( ), cost tη ϑ η ληΣ =  (43)

Substituting eq. (43) into eq. (4), and with the help of eq. (9), we obtain:

 ( ) ( ) ( ) ( ) ( ) ( )1 1 1, , cos e d
2 2

j tx t t t x t x tηϕ Φ η ηϑ η λη η ϑ λ ϑ λ
∞

−

−∞

= = = − + +      π ∫  (44)

the solution of eq. (44) is identical to the result [20].

Solving the 2-D heat transfer equation

The PDE in the 2-D heat transfer problem is:

 
( ) ( ) ( ) ( )

2 2
2

2 2

, , , , , ,
0, , , 0

x y t x y t x y t
x y t

t x y
ϕ ϕ ϕ

κ
 ∂ ∂ ∂

− + = −∞ < < ∞ > 
∂ ∂ ∂  

 (45)
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where κ is the thermal conductivity.
The initial condition is:

  ( ) ( ), ,0 ,x y x yϕ ϑ=  (46)

Combining eqs. (3) and (24) yields the Fourier-Yang integral transforms of eq. (45) 
with respect to x and y expressed:

 
( ) ( ) ( )1 2 2 2 2

1 2 1 2

, ,
, , 0

t
t

t
Φ η η

κ η η Φ η η
∂

+ + =
∂

 (47)

Similarly, the initial conditions is：
 ( ) ( )1 2 1 2, ,0 ,Φ η η ϑ η η=  (48)

From eqs. (47) and (48), we have:
 ( ) ( ) ( )1 2 1 2 1 2 1 2, , , ,tΦ η η ηη ϑ η η η η= Ψ  (49)
where

 ( ) ( )2 2 2
1 2

1 2
1 2

1 1, = e tκ η ηη η
η η

− +
Ψ  (50)

Utilizing eqs. (4) and (37), the inverse Fourier-Yang integral transform of eq. (50) is 
written:

 ( )
( )2 22 2

2 2 2
2 2 21 21 4 4 4

2
1 2

1 1 1 1 1e e e = e
2 2 4

x yx y
t t t t

t t t
κ η η κ κ κ

η η κ κ κ

− +
− −− +−

     π π
=      π π π        

  (51)

Substution of eqs. (50) and (51) into eq. (30), we have the analytical solution of the 
2-D heat transfer problem as:

 ( ) ( )
( ) ( )2 2

1 2

24
1 2 1 22

1, , , e d d
4

x y

tx y t
t

τ τ

κΦ ϑ τ τ τ τ
κ

 − − + − ∞ ∞  

−∞ −∞

=
π ∫ ∫  (52)

Conclusion 

In this work, some new properties of the Fourier-Yang integral transform are extend-
ed firstly, and the integral transforms of some functions are given. Applying those, we obtain 
the analytical solutions of the differential equations in the 1-D wave and the 2-D heat transfer 
problems. The results indicate that the Fourier-Yang integral transform is effective and precise 
in solving the partial differential equations.

Nomenclature

t – time, [s]  
x, y – space co-ordinate, [m]

Greek symbols

λ  – wave propagation rate, [ms–1]
κ  – thermal conductivity, [Wm–2K–1]
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