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In this paper, we pay attention the analytical method named, the Kudryashov 
method combined with characteristic set algorithm for finding the exact travelling 
solutions of two non-linear PDE in fluid mechanics, which named surface wave 
equation and the generalized Kuramoto-Sivashinsky equation. The solution proce-
dure of the Kudryashov method can be reduced to solve a large system of algebraic 
equations, which is hard to solve, then we use characteristic set algorithm to solve 
this problem. The obtained results show that the Kudryashov method combined 
with characteristic set algorithm is effective.
Key words: generalized Kuramoto-Sivashinsky equation, Kudryashov method, 
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Introduction

The PDE arising in many physical fields like the condense matter physics, fluid me-
chanics, plasma physics and optics, etc. The investigation of the exact solutions plays an im-
portant role in the study of physical systems, and finding exact solutions of the PDE is one of 
the central themes in mathematics and physics. In the past decades, a wealth of methods have 
been developed to obtain exact solutions of PDE. Some of the most important methods are the 
homotopy perturbation method [1], variational iteration method [2], Riccati differential equa-
tion method [3], and other methods [4-9]. 

The objective of this article is to look for new study for relating to the Kudryashov 
method to explore exact travelling wave solution for the surface wave equation and the gener-
alized Kuramoto-Sivashinsky equation. The solution procedure of the Kudryashov method can 
be reduced to solve a large system of algebraic equations, which is hard to solve, then we use 
the characteristic set algorithm to solve this problem. This application displays the simplicity, 
efficiency and effectiveness of the Kudryashov method with characteristic set algorithm [10]. 
To the best of our knowledge that the Kudryashov method has not been applied to the aforemen-
tioned equation in previous literature.

The Kudryashov method 

Let us introduce the Kudryashov method as wollows [10]. 
Consider the non-linear PDE in the following form:

 	 ( , , , , ) 0x t xx xtQ u u u u u = 	 (1)
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where u = u(x, t) is an unknown function, Q – a polynomial of u(x, t) and its partial derivatives 
in which the highest order partial derivatives and the non-linear terms are involved and the 
subscripts stands for the partial derivatives.

Step-1: We familiarize the travelling wave transformation:

	 ( , )= ( ),u x t u x ctξ ξ = − 	 (2)

where c is the speed of travelling wave, the travelling wave transformation eq. (2) transform eq. 
(1) into an ODE for u = u(ξ):
	 ( , , ,...) 0u u cuΘ ′ ′′− = 	 (3)

where Θ is a polynomial of u and its derivatives and the superscripts specify the ordinary de-
rivatives with respect to ξ.

Step-2: We look for exact solution of eq. (3) in the form:

	
0

( ) ( )
N

i
i

i
u a Qξ ξ

=

= ∑ 	 (4)

where ai(0 ≤ i ≤ N) are constants to be determined, such that aN ≠ 0, while Q(ξ) has the form: 

	 1( )=
1+ exp( )

Q ξ
ρ ξ

	 (5)

a solution the Riccati equation:
 	 ' 2( )= ( ) ( )Q Q Qξ ξ ξ− 	 (6)

where ρ is arbitrary constant.
Step-3: By balancing the highest order derivative terms with the non-linear terms of 

the highest order come out in eq. (4), we can evaluated the value of the positive integer N.
Step-4: By substituting eq. (4) along with eq. (6) into eq. (3) and equating all the 

coefficients of same power of Q(ξ) to zero, we obtained a system of algebraic equations. The 
obtaining system can be solved to find the value of c, ai(0 ≤ i ≤ N) substituting these terms into 
eq. (4) along with eq. (5), the determination of solutions of eq. (1) will be completed.

Characteristic set algorithm 

Let us give the characteristic set algorithm as follows [11]. 
A characteristic set, CS, of a polynomial system, PS, will be determined according to 

the following algorithm.
Input: A polynomial system PS. 
Output: A characteristic set CS of PS.
Step 1: PS0 ← PS.
Step 2: Take a basic set, BS, of PS0.
Step 3: Form RS = Remdr(PS0\ BS / BS) \{0}.
Step 4: If RS = ϕ then CS ← BS and return. Otherwise PS0 = PS + BS + RS and go to 

Step 2.
The Step 2 will be achieved by the algorithm below:
Input: A polynomial system PS.
Output: A basic set BS of PS. 
Step 1: Set PS′ = PS and BS = ϕ.
Step 2: If PS′ = ϕ then return BS. Otherwise take from PS′ a polynomial B of least class 

and least degree and set BS ← BS + {B}.
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Step 4: Set the set of polynomials in which are reduced w.r.t. B.
Step 4: Go to Step 2.
(Well-Ordering Principle) Let CS be a characteristic set of a polynomials system PS. 

Then:

	

Zero( / ) Zero( / )
Zero( / ) Zero( ) Zero( )

Zero( ) Zero( / ) Zero( { })i i

PS IP CS IP
CS IP PS CS

PS CS IP PS I

=
⊂ ⊂

= ∪ +

where Ii are initials in CS, and IP is the initial-product of CS.

Exact solutions of a surface wave  
equation in convecting fluid 

Consider the following surface wave equation [12]: 

	 0 1 2 0 1 2( ) 0t x x xxx xx x x xxxxu a u a uu a u b u b uu b u+ + + + + + = 	  (7)

which describes oscillatory Rayleigh-Marangoni instability in a liquid layer with free boundary. 
Let’s assume the traveling wave solution of eq. (7) in the form:

	 ( , ) ( ),u x t u x ctξ ξ= = − 	 (8)

where c is a arbitrary constant. Using the wave variable (8), the eq. (7) is carried to:

	 2 (3) (4)
0 1 0 1 2 2( ) 0a u cu a uu b u b u uu a u b u′ ′ ′ ′′ ′ ′′− + + + + + + = 	 (9)

integrating eq. (9) once with respect to ξ and setting the integration constant as zero, we get:

	 2 (3)1
0 0 1 2 2( ) ( ) 0

2
aa c u u b b u u a u b u′ ′′− + + + + + = 	 (10)

suppose that the solution of ODE (10) can be expressed:

	
0

( ) ( )
N

i
i

i
u c Qξ ξ

=

= ∑ 	 (11)

where ci(0 ≤ i ≤ N) are constants to be determined, such that cN ≠ 0. 
Consider the homogeneous balance between the highest order derivative u(3) and 

non-linear term uu′ appearing in (10), we have N = 2, we then suppose that eq. (10) has the 
following solutions:
	 2

0 1 2 2( ) ( ) ( ) , 0u c c Q c Q cξ ξ ξ= + + ≠ 	  (12)

substituting eq. (12) along with eq. (6) into eq. (10) and collecting all the terms with the same 
power of Q(ξ) together, equating each coefficient to zero, yields a set of algebraic equations, 
which is large and difficult to solve, with the aid of the characteristic set algorithm, we can dis-
tinguish the different cases namely:
Case (1)

	 2 2
2 1 0 0 1 2 0 2

1 1

12 12= , = , 0, 0,a ac c c b b b c a a
a a

− = = = = = +

Case (2)

	 2 2
2 1 0 1 1 2 2 0 2 0 2

1 1

12 24= , = , 0, 25 , 30 , 119 , 150b bc c c a b a b b b c a b
b b

− = = − = − = = −
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Case (3)

	 2 2 2
2 1 0 1 1 2 2 0 2 0 2

1 1 1

12 24 12, = , , 13 , 18 , 71 , 78b b bc c c a b a b b b c a b
b b b

= − = − = − = − = = +

Case (4)

	 2 2 2 1
2 1 0 1 0 2 0 2

1 1 2

12 12, = , 0, , ,b b a bc c c a b b c a a
b b b

= − = = = − = +

Case (5)

	 2 2
2 1 0 1 1 2 2 0 2 0 2

1 1

12 12, = , 0, 6 , 6 , , 6b bc c c a b a b b b c a b
b b

= − = = − = − = − = −

Case (6)

 	 0 0 0
2 1 0 2 1 2 0 0

1 1

12 24 6, , 0, , 0,
5 5 5 5

b b b
c c c a b b c a b

a a
= = − = = − = = = −

Case (7)

	
0 2 0 1 1 2 0 22 2 2

2 1 0 2 1 0
1 1 1 2

19 6 6 3612 24 12, , , , ,
5 5 5

b b b b bb b bb b bc c c a a c a
b b b b

+ − + −
= − = = − = − = = +

Case (8)
	 0 22 2

2 1 0 2 1 0
1 1 1

12 12, , , 0,
b bb bc c c a a c a

b b b
+

= − = = − = = =

Case (9)

	 0 0 0 0
2 1 0 2 1 2 0 0

1 1 1

12 24 12 6= , , , , 0,
5 5 5 5 5

b b b b
c c c a b b c a b

a a a
= − = = − = = = +

Case (10)

	 0 2 0 1 1 2 0 22
2 1 0 2 1 0

1 2

19 6 6 3612 , 0, , ,
5 5 5

b b b b b b b bbc c c a a c a
b b

+ − −
= − = = = = = −

Case (11)

	

2
2 0 2 2 0 2 22

2 1 0
1 1 2 0 2

2 2 2
2 0 1 2 1 2 0 1 2 1 2 2 2 2 2

1 0 0 2 0 2
2 2 0 2 2

2( 29 24 156 )12 , , 0
(5 31 )

30 30 6 6, ,
6 (5 31 ) 6

a b a b b b bbc c c
b b a b b

a b b a b b b b b b b a a b ba b c a a b b
b a b b b

− + −
= − = − =

+ +

+ + + + −
= = = + − −

+ +
	

	

Case (12)

 	 2 2
2 1 0 2 2 1 1 0 2 0 2

1 1

12 24, , 0, 6 , , , 6b bc c c a b a b b b c a b
b b

= − = = = − = − = − = −

Case (13)

	 2 2 2
2 1 0 2 2 1 1 0 2 0 2

1 1 1

12 22 10 5 49 25, , , 5 , , , +
6 6 6

b b bc c c a b a b b b c a b
b b b

= − = = − = − = − = =
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Case (14)

	 0 22 2
2 1 0 2 2 1 0

1 1 1

612 24, , , 5 , 0,
b bb bc c c a b a c a

b b b
+

= − = = − = − = =

Case (15)

	 0 0 0
2 1 0 2 1 2 0 0

1 1

12 12 6, 0, , , 0,
5 5 5 5

b b b
c c c a b b c a b

a a
= − = = = = = = +

Case (16)

	 2 2
2 1 0 2 2 1 1 0 2 0 2

1 1

12 72, , 0, 30 , 5 , 119 , 150b bc c c a b a b b b c a b
b b

= − = = = − = − = = −

Case (17)

	 0 2 0 1 1 2 0 22 2
2 1 0 2 1 0

1 1 2

31 6 6 3612 24, , 0, , ,
5 5 5

b b b b b b b bb bc c c a a c a
b b b

+ − − +
= − = = = − = = −

Case (18)

	 2 2 2 1 2
2 1 0 2 2 0 0 2

1 1 1 1

12 12 2, , , , ,b b b a bc c c a b b c a a
b b b b

= − = = − = = = −

Case (19)

	 2 2
2 1 0 2 1 2 0 0

1 1

12 12, , 0, 0, ,b bc c c a a b b c a
b b

= − = = = = = − =

Case (20)

	 0 0 0
2 1 0 2 1 2 0

1

12 6
, 0, , 0,

5 5 5
b b b

c c c a b b c a
a

= − = = = = = = −

Case (21)

	

2 2 2 3
2 0 2 0 2 2 2 0 2 22

2 1 2
1 1 2 0 2 2 0 2 2

2
2 0 2 2 0 2 2

0
1 2 0 2

2 2
0 2 0 0 2 0 0 0 2 2 2 0 2 2

2 0

2(29 6 29 102 92 )12 ,
( 45 29 29 )

12( 45 29 29 )
(29 6 96 )

29 6 35 6 96 299 276 270
29 6 96

a b b b b a b b b bbc c
b b a b a b b b b

a b a b b b b
c

b a b b

a a a b a b b a b a b b b b
c

a b b

+ + + +
= − = −

+ + +

+ + +
=

+ +

+ + + + + + +
=

+ + 2
2 2 2 2

2 0 1 0 1 2 1 2 0 1 2 1 2 2 2 2 2
1 02

22 0 2 2 0 2 2

35 6 299 +276 270 6 6,
66( 45 29 29 )

a b b b b a b b b b b b b a a b ba b
ba b a b b b b

+ + + − −
= =

+ + +

Case (22)

	 2 2 2
2 1 0 0 1 2 0 2

1 1 1

12 12 2, , , 0,a a ac c c b b b c a a
a a a

= − = = − = = = = −

Case (23)

	 2 2 2
2 1 0 1 1 2 2 0 2 0 2

1 1 1

12 48 36, , , 3 , 18 , 71 , 54b b bc c c a b a b b b c a b
b b b

= − = = − = − = − = = +
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For the sake of simplicity, we consider only the solution with respect to Case (1), the 
other solutions can be obtained in a similar way:

	
0 2 0 2

2 2
0 1 2( ) ( ) 2

1 1

12 12( , ) and 0
(1 e ) (1 e )x a a t x a a t

a au x t b b b
a aρ ρ− + − += − = = =

+ +

Exact solutions of the generalized  
Kuramoto-Sivashinsky equation

Consider the following generalized Kuramoto-Sivashinsky equation [13]: 

	 + 0t x xx xxx xxxxu uu u u uα β γ+ + + = 	 (13)

let us assume the traveling wave solution of eq. (13) in the form:

	 ( , )= ( ),u x t u x ctξ ξ = − 	 (14)

where c is a arbitrary constant. Using the wave variable (14), the eq. (13) is carried to:

	 (3) (4)' '' 0cu uu u u uα β γ′− + + + + = 	 (15)

integrating eq. (15) once with respect to ξ and setting the integration constant as zero, we get:

	 2 (3)1 0
2

cu u u u uα β γ′ ′′− + + + + = 	 (16)

suppose that the solution of ODE (16) can be expressed:

	
0

( ) ( )
N

i
i

i
u c Qξ ξ

=

= ∑ 	 (17)

where (0 )ic i N≤ ≤ are constants to be determined, such that 0Nc ≠ .
Consider the homogeneous balance between the highest order derivative (3)u and 

non-linear term 2u  appearing in eq. (16), we have 3N = , we then suppose that eq. (16) has the 
following solutions:
	 2 3

0 1 2 3 3( ) ( ) ( ) + ( ) , 0u c c Q c Q c Q cξ ξ ξ ξ= + + ≠ 	 (18)

substituting eq. (18) along with eq. (6) into eq. (16) and collecting all the terms with the same 
power of Q(ξ) together, equating each coefficient to zero, yields a set of algebraic equations, 
which is large and difficult to solve, with the aid of the characteristic set algorithm, we can dis-
tinguish the different cases namely:
Case (1)
	 0 1 2 3180 , 480 , 420 , 120 , 90 , 73 , 16c c c c cγ γ γ γ γ α γ β γ= = − = = − = = = −

Case (2)

 	 0 1 2 312 , 0, 120 , 120 , 6 , , 4c c c c cγ γ γ γ α γ β γ= − = = = − = − = =

Case (3)

	 0 1 2 360 , 0, 180 , 120 , 30 , 19 , 0c c c c cγ γ γ γ α γ β= − = = = − = − = − =  

Case (4)

	
0 1 2 3

720 30 190, , 180 , 120 , , , 0
11 11 11

c c c c cγ γ γ γ α γ β= = − = = − = − = =
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Case (5)

	 0 1 2 3180 , 0, 60 , 120 , 90 , 73 , 16c c c c cγ γ γ γ α γ β γ= = = − = − = = =

Case (6)
	 0 1 2 30, 120 , 240 , 120 , 6 , , 4c c c c cγ γ γ γ α γ β γ= = − = = − = − = = −

Case (7)
	 0 1 2 30, 120 , 60 , 47 , 12c c c c cγ γ α γ β γ= = = = − = − = =

Case (8)
	 0 1 2 30, 180 , 120 , 30 , 19 , 0c c c c cγ γ γ α γ β= = = = − = = − =

Case (9)
	 0 1 2 30, 120 , 120 , 6 , , 4c c c c cγ γ γ α γ β γ= = = = − = = = −

Case (10)
	 0 1 2 30, 60 , 120 , 90 , 73 , 16c c c c cγ γ γ α γ β γ= = = − = − = − = =

Case (11)

 	 0 1 2 312 , 120 , 240 , 120 , 6 , , 4c c c c cγ γ γ γ γ α γ β γ= = − = = − = = = −

Case (12)

	 0 1 2 3120 , 360 , 360 , 120 , 60 , 47 , 12c c c c cγ γ γ γ γ α γ β γ= = − = = − = = = −

Case (13)

	 0 1 2 3120 , 0, 120 , 60 , 47 , 12c c c c cγ γ γ α γ β γ= = = = − = = =

Case (14)

	 0 1 2 30, 480 , 420 , 120 , 90 , 73 , 16c c c c cγ γ γ γ α γ β γ= = − = = − = − = = −

Case (15)

	

2 2

0 1 2

2
2 2

3

8(11 28 ) 240( 18 ), , 15( 12 )
7 44 7 44

4(11 28 )120 , , , 16 0
7 44

c c c

c c

βγ γ βγ γ β γ
β γ β γ

βγ γγ α γ β γ
β γ

− −
= − = = − −

+ +

−
= − = − = − + =

+
Case (16)

	 0 1 2 30, 360 , 360 , 120 , 60 , 47 , 12c c c c cγ γ γ γ α γ β γ= = − = = − = − = = −

Case (17)

	

2

0 1 2

2
2 2

3

240( 18 )0, , 15( 12 )
7 44

4(11 28 )120 , , , 16 0
7 44

c c c

c c

βγ γ β γ
β γ
βγ γγ α γ β γ
β γ

−
= = = − −

+

−
= − = = − + =

+
Case (18)

	
0 1 2 3

60 720 30 19, , 180 , 120 , , , 0
11 11 11 11

c c c c cγ γ γ γ γ α γ β= = − = = − = = =
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For the sake of simplicity, we consider only the solution with respect to Case (1), the 
other solutions can be obtained in a similar way:

	 90 3 90 2 90

120 420 480( , ) 180
(1 e ) (1 e ) 1 ex t x t x tu x t γ γ γ

γ γ γγ
ρ ρ ρ− − −= − + −

+ + +

Conclusion

In this paper, we use the Kudryashov method combined with characteristic set algo-
rithm to solve the surface wave equation and the generalized Kuramoto-Sivashinsky equation 
which are arising in fluid mechanics, this process can be reduced to solve a large system of 
algebraic equations, which is hard to solve, then we use characteristic set algorithm to solve the 
algebraic equations. The results show the effective of this method.
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Nomenclature
u(x, t) 	 – speed of travelling wave, [ms–1]                         x 	– space, [m]
t 		  – time, [s]
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