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A collocation Fourier scheme for Swift-Hohenberg equation based on the convex 
splitting idea is implemented. To ensure an efficient numerical computation, we 
propose a general framework with linear iteration algorithm to solve the non-lin-
ear coupled equations which arise with the semi-implicit scheme. Following the 
contraction mapping theorem, we present a detailed convergence analysis for the 
linear iteration algorithm. Various numerical simulations, including verification of 
accuracy, dissipative property of discrete energy and pattern formation, are pre-
sented to demonstrate the efficiency and the robustness of proposed method.
Key words: Swift-Hohenberg equation, energy stability,  

collocation Fourier method, linear iteration

Introduction

The Swift-Hohenberg (SH) equation is an important physical model and can be ap-
plied in roll patterns in Rayleigh-Benard convection in [1], chemical reactions [2], and liquid 
crystal displays [3, 4]. 

The SH equation is given by the L2 gradient flow:

 	 3 2 2 2u u u u u
t

γ δ∂
= − + − −∆ ∆

∂
e 	 (1)

on Ω = [0, Lx] × [0, Ly], and γ, δ2, and 𝜖2 are positive real constants. Here we only consider the 
periodic boundary value condition. 

Regarding to the numerical consideratio, it is well known that the numerical treatment 
of gradient flow poses certain challenges owing to the physical complexity. Energy stability 
of the proposed numerical scheme is necessary for SH equation. For example, the linearized 
schemes are given by Cheng and Warren [5] with three undetermined weights and Backofen et 
al. [6] with a directly linearized formula (ϕk + 1)3 ≈ 3(ϕk )2 ϕk + 1 – 2(ϕk )3. More extensive appli-
cations of energy-stable or energy conservative method to a wide class of physical models also 
are available. See the related works for wave equations [7, 8], the phase field crystal equation 
[9] and the Cahn-Hilliard equation [10-12], etc. 

In general, for most convex splitting numerical works, a local spatial discretization, 
such as the finite difference or finite element approximation is often used, because some highly 
efficient non-linear, for example, the steepest descent method [13], solvers can be borrowed 
readily. But a spatial approximation with a global nature, such as spectral or collocation spec-
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tral method for SH equation, is very difficult. The key reason is that, the convex splitting 
scheme usually treats the non-linear term implicitly, since the non-linear part corresponds to 
the convex part of the Lyapunov energy functional. Whereas, for collocation spectral method, 
the major advantage is that it is easier to implement, and very efficient due to the fast Fouri-
er transform. In this paper, a first-order convex splitting scheme, with a collocation Fourier 
method for the SH eq. (1) is proposed. To implement the non-linear numerical scheme, a linear 
iteration algorithm is introduced and the corresponding contraction mapping property under a 
given condition is shown. 

The numerical Scheme

Collocation Fourier spectral discretization space

Assume that Lx = Nxhx, Ly = Nyhy, for some mesh sizes hx, hy > 0 and some positive 
integers Nx and Ny. For simplicity of presentation, we use a square domain, i. e., Lx = Ly = 1,  
and a uniform mesh size hx = hy = h, Nx = Ny = N. We will always assume that N = 2K + 1 is al-
ways odd. All the variables are evaluated at the regular numerical grid (xi, yj), with xi = ih, yj = jh,  
0 ≤ i, j ≤ N . 

For a periodic function, f, over the given 2-D numerical grid, its discrete Fourier ex-
pansion is given:
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,
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its collocation Fourier spectral approximations to first and second order partial derivatives are 
given:
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and the corresponding collocation spectral differentiations in the y-direction can be defined in 
the same way. 

We introduce the 𝓁∞ and 𝓁p, 𝓁 ≤ p < ∞ norms for a grid function: 
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The following Lemma will play important role in the contraction mapping analysis 
for our algorithm. 

Lemma 1. Suppose γ1, γ2 > 0. For any periodic grid function f, we have: 

	 2 2 2
0 4 1 2 2 22 || || || |||| || NC f f fγ γα ∆≤ +  	 (5)

where α = –2γ2 + 2[γ2( γ1 + γ2)]1/2
.

Proof. For the proof of eq. (5), a discrete version of Sobolev embedding from H2
h (the 

discrete case of H2 space) into 𝓁4, we have to utilize the grid function, f, with its discrete Fourier 
expansion defined as eq. (2). An application of discrete Parseval equality gives:

 	 2 2 2 2 2 2 2
2 , 2 , , 2 , ,

, , ,

ˆ ˆ ˆ|| || | | || | | |, , || |
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with λl,m = 4π2(l2 +m2). Then, letting: 
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we have: 

	

2 2 2 2
1 2 2 2 2 2 , ,

,

2 2 2 2
2 2 , , 2 2

,

2

2

ˆ|| || || || ( ) |

|| || 2 | | || || 2 || |

|| || |

ˆ |

K

l m l m
l m K

K

l m l m N
l m K

N

f

f f f f

f f f

γ γ α β γ λ

α βγ λ α βγ

=−

=−

+ = + + ≥

= + ∇

∆

≥ +

∑

∑  	 (8)

Next, we choose values of α and β with α = 2(βγ2)1/2. It follows from eq. (8): 

 	 2 2 1 2 1 2 2 1 22 2 ( ) 2 2 ( )α γ γ γ γ β γ γ γ γ γ= − + + = + − + 	 (9)

Therefore, from eq. (9), follows: 

	 1
2 2 2 2 2 2

1 2 2 2 2 2 0 4|| || || || || || || || || || ||||
h

N N H
f f f f f C fγ γ α α α α+ ≥ + ∇ ≥∆ =  	 (10)

in which a discrete Sobolev embedding from H1
h to 𝓁4 is used. This completes the proof.

Semi-implicit numerical scheme

We propose the following fully discrete first-order (in time) Fourier collocation spec-
tral Scheme for SH eq. (1):

	  
1

1 3 2 2 2 1( )
n n

n n n n
N N

u u u u u u
t

γ δ
+

+ +−
= − + − ∆ − ∆

∆
e 	 (11)

where Δt is the discrete time step and un denotes the time-discrete approximation of u(⋅, nΔt),  
n = 0, 1,..., M = [T/Δt], and T – the given final time. 

Lemma 2. Assume that un is the numerical solution of eq. (11). Then, the following 
estimates are valid: 
	  4 1 2 2 2 3 4|| , || , ||| || || || , || |n n n n

Nu C u C u C u C∞≤ ≤ ∆ ≤ ≤ 	 (12)
for n = 1, 2,..., M. 

Linear iteration algorithm

In this section, we mainly discuss an efficient algorithm for solving eq. (11). Firstly, 
we note that the scheme (11) can be reformulated as a closed equation for un+1: 

 	 22 1 2 1 31 1 ( )n n n
N Nu u u

t t
+ +   + = + − −   ∆ ∆  

∆ ∆


δ γI e 	 (13)

or, equivalently: 
 	 2 2 1 2 1 3) [1 ) )( ( )]n n n

N Nt u t u t uδ γ+ ++ ∆ ∆ = + ∆ −∆ ∆ −∆I I e 	 (14)

where I denotes the identity operator. Also, define a linear operator A and the value fn at the 
nth level: 
	 2 2 2: : [(, ]1 ) n

N n Nt f t ut+ ∆= = + ∆∆ −∆ ∆γδA I I e 	 (15)

Then, eq. (14) can be simplified:

 	 1 1 3( )n n
nu f t u+ += − ∆A 	 (16)

Obviously, the non-linear part in this equation is treated implicitly. To overcome the 
difficulty associated with the implicit treatment of the non-linear term, a linear solver is neces-
sary, and we propose the following linear iteration algorithm: 
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	 1,( 1) 1,( ) 3( )n k n k
nu f ut+ + +− ∆=A 	 (17)

in which un+1,(k) corresponds to the numerical solution at the kth iteration.
The following theorem gives an affirmative answer for the convergence of such an 

iteration algorithm. 
Theorem 1. The linear eq. (17) is a contraction mapping in the discrete norm, provided 

that: 

	  
2 2
0

2 2 2
1 1 05 (5 2 )

C
t

C C C
δ

δ
∆ <

+
	 (18)

with the positive constants C0, C1, which are given in eqs. (5) and (12), respectively.
Proof. Let un+1 be the unique periodic solution to eq. (14) and define the iteration error 

at each stage via: 
	  1,( ) 1:k n k ne u u+ += − 	 (19)

Subtracting eq. (17) from eq. (16) yields the following discrete equation:

	  1 1,( ) 3 1 3( ) ( )k n k ne t u u+ + + = −∆ − A 	 (20)

Taking a discrete iner product of eq. (20) with ek+1, and using integratio by parts leads to: 
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> ∆

+ ⋅>

A
	(21)

in which a discrete Holder inequality was applied at the last step. To proceed the non-linear 
analysis, we use the induction method to handle the bound of error function ek . In general, we 
choose un+1,(0) = un as the initial value. By the preliminary bound (12) in Lemma 2, we can get 
an estimate for e0 in the || ⋅ || norm: 

	  0 1 1
4 4 4 4 1|| || ||| || || | || 2||n n n ne u u u u C+ += − ≤ + ≤ 	 (22)

and make the following the inductive assumption at the iteration stage k:

	 4 1|||| 2ke C≤  	 (23)

With this assumption, a bound of un+1,(k) in the || ⋅ ||4 norm is derived: 

	  1,( ) 1 1
4 4 4 4 1|| || || ||| || || | 3||n k k n k nu e u e u C+ + +≤ + ≤ + ≤ 	 (24)

Going back to eq. (21), we consider the term ||ek+1||22 + Δtδ2 ||ΔNek+1 ||22. According to 
Lemma 1, taking γ1 = 1 and γ2 = Δtδ2, we have: 

	  1 2 2 1 2 2 2 2 1 2
2 2 0 4|| 2 2|| || || ||2 ( 1) ||k k k

Ne t e C t t t eδ δ δ δ+ + ++∆ ≥ − ∆ + ∆ 
 ∆∆ + 	 (25)

which indicates: 

 	 2 2 2 1 2 1,( ) 2 1 2 1
0 4 4 4 4 42 2 2 ( 1) || (|| || ) || ||| || || || |||k n k n k kC t t t e t u u e eδ δ δ + + + +− ∆ + ∆ ∆ +
 ≤ ∆ + ⋅

 	 (26)

Hence, it follows from eq. (26) that: 

	 2 2 2 1 2
0 4 1 4( 1) | || || 5 || |k kC t t t e C t eδ δ δ +∆ ∆ + − ∆∆ ≤ 
   	 (27)

and we arrive at the estimate: 
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As a result, a contraction is assured under the condition that:
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that is: 
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Clearly, we are justified in our a priori assumption of eq. (23), since:

	 1
4 4 1|| ||| ||| 2k ke e C+ < ≤ 	 (31)

provided that condition of eq. (31) is enforced, which completes the proof of Theorem 1. 

Numerical experiments

In this section, we present some numerical experiments to verify the theoretical re-
sults obtained in the previous sections, particularly the accuracy test, the energy stability and 
the pattern formation. 

Accuracy test

An example provides the numerical evidence for our numerical scheme being first-or-
der accurate in time and spectral accurate in space. The set-up of this accuracy test is based on 
that presented [11, 14]. We solve the 1-D SH equation on the domain Ω = [0.32]. The initial 
condition is defined: 

	 2 22 ( 12) 2 ( 10) 4( ) 0.07 0.02cos 0.0171cos 0.0085sin
32 32 32
x x xu x π − π + π     = − + −          

	  (32)

For exploring the temporal accuracy in time, we fix spatial resolution as N = 2048 so 
that the numerical error is dominated mainly by the temporal ones. We computed a reference 
solution at time T = 1 using a time step Δt = 1/211 and assume that this space time discretization 
is fine enough as to suppose that the reference solution is exact. With a sequence of time step 
sizes Δt = 0.1, 0.005, 0.025, 0.0125, and 0.00625, we also compute the numerical errors at  
T = 1 for the parameter group (I): γ = 0.001, ε2 = 1, δ2 = 1, and the parameter group (II):  
γ = 0.025, ε2 = 1, δ2 = 10, respectively. The results are presented in tab. 1 in which a first-order 
in time accuracy is shown clearly. 

Table 1. The ||⋅||2 errors and convergence orders of the numerical 
solution T = 1 at for different parameter group γ, ε2, and δ2 

Δt γ = 0.001, ε2 = 1, δ2 = 1 Order γ = 0.025, ε2 = 1, δ2 = 10 Order
0.1 6.7072556e-6 – 1.3791082e-4 –
0.05 3.3186000e-6 1.015147 6.8618141e-5 1.007073
0.025 1.6374393e-6 1.019133 3.3978888e-5 1.013951
0.0125 8.0141592e-7 1.030818 1.6648254e-5 1.029267
0.00625 3.8417922e-7 1.060771 7.9846732e-6 1.060065
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To demonstrate the accuracy in space, we take Δt = 10–4 so that the temporal numerical 
error is negligible. Also, we computed a reference solution at time T = 5 with N = 2048 and as-
sume that this space time discretization is fine enough as to suppose that the reference solution is 
exact. With grid sizes N = 8, 16, 32, 64, and 128, we solve eq. (11) up to for two different param-

eter groups given in previous subsec-
tion, respectively. The discrete norm ||⋅||2 
of numerical errors at T = 5 is given in 
tab. 2, which shows the spatial spectral 
accuracy is verified. Noting that when 
N increases from 64 to 128, there have 
so little difference between errors. The 
main reason is that the value of N is so 
large that the numerical errors are domi-
nated by the temporal discretization. 

In this subsection, we present some numerical tests to support the theoretical analysis 
for the proposed linear iteration algorithm of eq. (14). We fix γ = 1, ε2 = 1, N = 256, and Δt = 
0.01. Different values of the coefficient δ2 and the final time are used to compare the times for 
the linear iteration. By setting 10–9 as the tolerance of iteration error, we present the detailed re-
sults in tab. 3 From tab. 3, it is clear that the linear iteration error reaches a saturatio after certain 
iteration stages. We observe that the time for the linear iteration increases with a decreasing val-
ue of δ2, which in turn implies that numerical implementation of the linear iteration algorithm of 
eq. (14) becomes more challenging with a smaller diffusion coefficient δ2. This result matches 
with our theoretical analysis in the proof of Theorem 1. 

Table 3. Iterations of the propose algorithm at different final time with different
δ2 T = 4 T = 5 T = 6 T = 7 T = 8 T = 9 T = 10
1 6 5 5 4 4 3 3

0.1 7 8 8 8 8 8 8
0.01 28 25 25 24 24 24 23

Pattern formation

Localized structures, which can be described by real order parameter equations in the 
form of SH type of models, remain of great interest in the pattern-formation community. In fact, 
Many recent experimental and theoretical studies have focused exclusively on localized pattern 
formation [15]. From SH eq. (1), one expects to observe the single stripe becomes unstable by 
the emergence of undulations. 

Here the parameters are γ = 1, ε2 = 2, δ2 = 1. Take Ω = [0.40]2 and fix the spatial resolu-
tion as N = 512 and the time step as Δt = 0.1. The initial condition is a constant state in which we 
embed a curvy vertical stripe with the phase variable taking the value u = 1. The initial pattern 
evolves developing horizontal fingers that might bifurcate, see fig. 1. 

The fig. 1(b) illustrates the manifestation of this undulations under the consideratio 
of an infinitely long rod-like structure, to avoid border effects. Later, this undulated stripe is re-
placed by the emergence of facets that form a zigzag structure. However, the higher non-linear 
terms control the evolution of the single stripe, then the dynamics of initial zigzag is replaced 
by the growth of undulations without saturatio as it is depicted in fig. 2. The numerical results 
are consistent with the experiments on this topic [14]. 

Table 2. The ||⋅||2 errors of spectral accuracy for the  
numerical solution at T = 5

Δt γ = 0.001, ε2 = 1, δ2 = 1 γ = 0.025, ε2 = 1, δ2 = 10
8 9.21122e-05 1.246072e-06
16 1.37439e-06 1.103986e-12
32 2.67306e-13 2.376737e-14
64 5.71089e-14 3.670676e-14
128 7.14353e-14 4.489314e-14
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Figure 1. (a) Initial status of u(x, y) at t = 0, (b) numerical solution of u at T = 30 
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Figure 2. (a) Initial status of u(x, y) at T = 60, (b) numerical solution of u at T = 120

Conclusion

In this paper we simulated an energy-stable first-order numerical scheme for the SH 
equation with the Fourier pseudospectral approximation in space. Since the energy stability 
has to be considered, it leads to the non-linearity of the derived scheme. Although the global 
nature of the Fourier pseudo-spectral scheme makes a direct non-linear solver not feasible, we 
introduced a linear iteration algorithm and its contraction mapping property in a discrete || ⋅ ||4 

norm is also justified at a theoretical level. Moreover, various experiments, such as accuracy 
tests, efficiency of the iteration and pattern deformation are given to demonstrate efficiency and 
robustness of the proposed scheme.
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