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In this paper, the inverse scattering transform is extended to a super Korteweg-de
Vries equation with an arbitrary variable coefficient by using Kulish and Zeitlin's
approach. As a result, exact solutions of the super Korteweg-de Vries equation are
obtained. In the case of reflectionless potentials, the obtained exact solutions are
reduced to soliton solutions. More importantly, based on the obtained results, an
approach to extending the scattering transform is proposed for the supersymmet-
ric Korteweg-de Vries equation in the 1-D Grassmann algebra. It is shown the
the approach can be applied to some other supersymmetric non-linear evolution
equations in fluids.
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Introduction

As pointed out by Zhang and Liu [1] that soliton equations and their supersymmetric
counterparts are relevant both physically and mathematically. From the viewpoint of mathe-
matics, supersymmetry originated from theoretical physics is formulated by extending ordinary
space to include anticommuting variables of Grassmann type so that bosons and fermions can
be treated in a unified way. As the non-commutative extensions of differential systems, super-
symmetric equations can model a variety of physical phenomena and dynamical processes [2].

It is well known that the celebrated Korteweg-de Vries (KdV) equation:

u, =—u_ +6uu (1)
is a completely integrable non-linear equation for a bosonic field [3]. The supersymmetric ex-
tension of the KdV eq. (1) refers to a system coupling a bosonic field and a fermionic field,
which reduces to eq. (1) in the limit case when the fermionic field vanishes and keeps invariant
under a so-called supersymmetry transformation.

To construct a supersymmetric extension of eq. (1), the classical space and time
(¢, x) needs to be extended to a super space and time (z, x, ) and the usual field u(z, x) is
then replaced with a superfield @(¢, x, 0), here 6 is an anticommuting variable which leads to

> = (. Thus, we have a simple Taylor expansion of @(z, x, 8) = &(t, x) + Ou(t, x), here u(z, x) and
&(t, x) are called component fields, the bosonic field u(¢, x) is commuting, while the fermionic
field &(¢, x) is anticommuting. Proceeding with a direct extension, we have:

u -0, u, —0 , 3uu —>adPDPD +(6—a)P DD 2
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where a is a free constant, D — the superderivative D = 00 + 0, whose square is the usual deriv-
ative D* = 0. Then the KdV eq. (1) has a extension in terms of superfield:

G =@, +a(DB)P +(6-a) DD, 3)

which is integrable only if @ = 3 [3]. In this case, the component version of eq. (3) reads:
u, =-u_ +6uu -3 4)
S = "G TUG, +3u (&)

which reduces to eq. (1) in the limit when the fermionic field ¢ vanishes and keeps invariant
under the so-called supersymmetry transformation J: x — x — 56, § — 6 + 1, here 5 is an anti-
commuting parameter, or equivalently in the component fields [4]: du(z, x) = u(z, x) + né&.(t, x),
o&(t, x) = &(t, x) + nu(t, x). In fact, it is easy to check:

oD(t,x,0)=D(t,x—1n0,0+n) =D(t,x,0)-n0D(t,x,0)+nD,(t,x,0) =
=&t x)+nu(t,x)+ Olu(t,x)+né (t,x)] = 55 (t, x) + Ou(t,x) = D(t,x,60) (6)

Therefore, the system of eqs. (4) and (5) gives a supersymmetric extension and is
called supersymmetric KdV equation. However, the following extension of eq. (1) [5]:

L =—u, +6uu —3EE @)
& =45  +6ul +3u (8)

is not a supersymmetric KdV equation. It is because that eqs. (7) and (8) are not invariant under
the supersymmetry transformation J. Correspondingly, we call the system of egs. (9) and (10)
a super KdV equation.

With the developments of soliton theory, some analytical methods have been extend-
ed to solve supersymmetric non-linear evolution equations, such as Hirota method [6], Back-
lund transformation [1], Darboux transformation [7], and Painleve analysis [8]. Comparatively
speaking, the famous inverse scattering method [9] has not been successfully extended to the
supersymmetric non-linear evolution equations in spite of the few pioneer works [10-16]. In
2005, Kulish and Zeitlin [16] extended the inverse scattering transform to a super KdV equation:

u

u, =—u,_ +6uu +12&& 9)

S =48, Toug, +3u.s (10)

in the case of 1-D Grassmann algebra.

In the present paper, following Kulish and Zeitlin’s approach [16] we shall extend the
inverse scattering transform to super non-linear evolution equations with variable coefficients.
For such a purpose, we consider the following variable-coefficient version of the super KdV
egs. (9) and (10):

u, = —a(Ou,,, +6a(uu, —12a()ég,, (1n

& =—4a(t)G +06a(Dug, +3a(u.g (12)

on one hand. More importantly, inspired Kulish and Zeitlin’s approach [16], we shall discuss
the scattering transform for the supersymmetric KdV egs. (4) and (5) on the other hand.

Derivation
For the super KdV eqgs. (11) and (12) we have the following Theorem 1.
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Theorem 1. The super KdV eqgs. (11) and (12) have the Lax representation:

L =[M,L] (13)
where:
—u, -4 44 -2u
M = a(t) 2u—4EL—4E, 0 —4¢ (14)
—4EE +u, —2u +2uA+4AA7 2Eu+AEL+AE, u,
0 0 1
L=0,+] =& 0 0 (15)
u+dA & 0

Proof. We substitute egs. (14) and (15) into eq. (13), then a direct computation gives
eqs. (11) and (12). The proof is finished.
Direct scattering analysis

It is easy to see that the super KdV egs. (11) and (12) can be derived from the compat-
ibility condition of the linear spectral problem and its time evolution equation:

Lp=0, O0,p=M¢ (16)
where ¢ = [¢1(x), p2(x), p3(x)]7, pi(x) and @;(x) belong to the even part of the Grassmann alge-
bra, ¢s(x) belongs to its odd part, and the operator L is the scalar Lax operator:

L=-0'+A+u-&7"¢ (17)

which is equivalent to the matrix Lax operator (15).
For the completeness, we first recall the analysis of the linear problem L¢ = 0. Take a
similarity transformation [16]:

0 00
ULU™, U=, X =|0 0 0 (18)
1 00
we get the operator:
—ik 0 1
L'=0.+-¢ 0 0 (19)
u & ik
Further taking the matrix:
1 0 —Qik)"
N=|0 1 0 (20)
0 0 (2ik)"
we then reduce L' to a diagonal form:
—u(2ik)"  —EQik)" —u(2ik)” —ik 0 0
L=NL'N"'=| =¢£ 0 £ |+ 0 0 0|+0, (21)

u2ik)" EQikY u(2ik)” 0 0 ik



Zhang, S., et al.: Inverse Scattering Transform for a Supersymmetric ...
S680 THERMAL SCIENCE: Year 2019, Vol. 23, Suppl. 3, pp. S677-S684

In this case, the corresponding linear problem Lgp = 0 gives:

—u(ik)y™" —£Qik)" —u(2ik)™ —ik 0 0
£ 0 £ o+ 0 0 0 |p+0,0=0 (22)
u(2ik)"  EQik)" u(2ik)”! 0 0 ik
and can be re-written as:
0. @ =ikhg+ Qg (23)
where
uQik)"  EQikY u(2ik)” 10 0
0= 4 0 3 o, h=10 0 0 (24)
—u(ik)" —£Qik)" —u(2ik)” 00 -1

We take a pair of Jost solutions of the linear problem (23):

e 0 0
¢"(x,k)= I 0 |, x>+4» (25)
0 e™
e™ 0 0
G k=0 1 0| x> (26)
0 0 ™

so that N'¢" N are elements of the group Osp (1]2), i. e., (N"'¢"N)J(N'¢*N)" =J , here
00 1) (a a b (a -B ¢

J=l0 1 0,|p f 6| =la f ¥ 27)
100/ lc y d b -5 d

Secondly, leting the transfer matrix be of the form:

a(k)  y(k) b(k)
T(k)y=|¢k) f(k) o6(k) (28)
c(k) n(k) d(k)
so that:
¢" (x, )T (k) = ¢~ (x,k) (29)
then we can determine relation between elements of 7(k)[16]:
a(k) y(k) bk)) (a(k) y(k) bk)
T(ky=|¢k) [f(k) o(k)|= cz(k) f(k) 6(k) (30)
c(k) n(k) dk)) \b(k) y(k) a(k)
i.e,f=0,d=a,n =7, and f=f, here bar denotes taking the reversion of the sign of k. Since
N'TN € Osp(1]2), we have the following constraints:
f=1-2ikyy, f(aa-bb)=1, &=-2ik(7b—ya) (31)
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which degenerates into:
/=1, aa—-bb =1, &=-2ik(yb-ya) (32)

in the case of the 1-D Grassmann algebra.
With the help of the factorization 7%(k) = T(k)T(k), here:

1 85()Qik)™"  bk) a(k) 0 0
T*(k)=|0 a(k) Sy |, T-(k)=| 7(k)Qik)"  a(k) 0 (33)
0 0 a(k) —b(k)y  -y(k) 1

we construct the following matrix-valued function:
9" (x,k) = 4" (e, T (k)e™" = ¢~ (e, k)T~ (k)e™ (34)
From egs. (23), (25), and (33), we have:

+00

0 (x,k) = {e =[O0 k0" (3, k)dy}T* (k)e ™" =

+o0

= eﬂahT+ (k)e_ihh — J. eik(x‘}’)hQ(y’ k)(0+ (y,k)eik(y_X)hdy (35)

x

the first column of which reads:

~2ik)" [ {3, (K + 03, (1, )]+ £ (3, 6]} dy

(01] 1 +00
O x,k) = =0+ — | e O, (0, K) + 5, (1, K)]} d (36)
%4 > (23 Lo, @55 Ly

@) \0 ’

(2ik)" I e U, (0,50 + @y, (. )]+ (), (v,K) | dy

In view of egs. (34) and (36), we get ¢*V(x, k) = ¢*D(x, k)e™ for the first column of
the Jost solution (25) and therefore, have:

+0 2ik(x-y)

U+ [ = [, v ) + )i (v, ) Jdy

x

. (x,k) = N"p™" (x.k) = —T Gy (v, k)dy (7

x

+00

J‘ o 2k (x=) I:“(Y)’Tli (y, k) + g(y)n_cf (v, k)] dy

x

which implies:
u(x) = 2iko i (x,k), E(x)=iko m:(x,k), |k| — 400 (38)

Inverse scattering analysis

To restore u(x) and &(k), we have:

u(t,x) =0, {Ziz R;(x) +—T[—r(x)R(—z,x)e = ] dz} 39)
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N “+o0
&(t,x) = iz 0,(x)+ ZL _[ [—r(x)@(—z, x)e > 4+ 2izp(z)e™ } dz (40)
J=1 T —0
by solving the Riemann problem [16]:
T 2K,x N R X +00 _ _ —2izx
R ()= -2 1+iz—f() +Ljdz r@R(z, x)e (41)
a'(ix,) Sk, tk, 27iZ, z+iK,
= KX 7. .2K,x N ® (x +00 _ _ —2izx . —izx
0, (x)-— 2/27?16 ~ i)'e' ; (%) N L I § T@O(=z,x)e | +2izp(z)e “2)
a'(ic,) a(x)\ =« +x, 2ir?, z+iK,

RG)=14 i kR] (x) +LT’ d& —r(2)R(—z,x)e”™

—ix; 2mi=, z—(k+i0) (43)
1 F . —r@0(-z,x)e”™ +2izp(z)e™
Ok z k—ix, 27ri jdz z—(k+i0) “44)
b(k k
k) = _Ek; ot =200 (45)

For the scattering data, we have the following Theorem 2.
Theorem 2. In the 1-D Grassmann algebra, the transfer matrix (28) has the time-de-
pendence:

1 1
8ik [ ar(r)dr 4ik’ | a(r)dr

a(t,k)=a(0,k), b(t,k)=b(0,k)e * , y(t,k)=y(0,k)e ° (46)
_ _ —8ik* 'a(r)dz —4ik* 1 a(r)dr
a(t,k)=a(0,k), b(t,k)=b(0,k)e ° , ¥(t,k)=y(0,k)e ° (47)

where a(0, k), a(0, k), b(0, k), b(0, k), y(0, k), and (0, k) are constants.
Proof. From eq. (16), we have:

D ==P35 Pr = s, @5 = —(u +ﬂ~)(/71 —&p,, A=-k* (48)
@, =—au, @ +a() (41 -2u)p, —4a(t)S, ¢, (49)
@, =[2a(Du, —42a(t)é —4a®)S,, Jp, —4a(t)s,p; (50)

@, =[-4a(®)EE +a(t)u, — 2e(Hu’ + 2 a(t)u + 4}L205(t)]go1 +
H2a@)eu+4ra()é +4a()é g, —a(t)u @, (51)
Using the relation ¢~ (x,k) =¢" (x,k)T(k) and egs. (25) and (26) yields:
T(t,k) = e%ik3a(t)hT(k)e4ik3a(t)h (52)
From egs. (25), (26), (30), and (52), we then have:

da(t,k) . db(t,k)
dt t

=0, = 8il>b(t, k), @ = 4ik’y(1,k) (53)
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Solving eq. (53) we arrive at eq. (46). Consequently, we can easily derive eq. (47) by
using the relations a(z, k) = a(t, —k), b(t, k) = b(t, —k), y(t, k) = y(t, —k) Thus, the prove is end.
Soliton solutions

Leting b(t, k) = 0 and p(z, k) = 0, in the case of reflectionless potentials we obtain
soliton solutions:

u(t,x) = 2i8xiRj (x), &(t,x)= ii 0,(x) (54)

where

R, (x)=~ (55)

Jj=1 Rp J

— 2k,x N R x 2 = KX 7..2K,x N @ x
be 1403 () © (1)=— A be (%)
a'(ix,) a'(ix,) a(ix,) ‘9 K, +x;

Particularly, we obtain one-soliton solutions:
u(t,x)= —gsech2 {%(x - c_[a(z’)drﬂ , &(t,x) =—-vsech {%(x - cj a(r)drﬂ (56)
0 0

where v is a free odd constant element of the Grassmann algebra, and a(0, x;)) = 1,
b(0, k) = —i(c)"?, k, = (¢)"*/2 have been used.

For the supersymmetric KdV egs. (4) and (5), it should be noted that if we suppose
& = vw(t, x) then eq. (4) reduces to the KdV eq. (1). Sine the scattering transform for eq. (1) is
known, we can solve eq. (5) given the known scattering solution u. Extending the scattering
transform to supersymmetric non-linear evolution equations with local fractional derivatives
[17-22] is worthy of study.
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Nomenclature

d/dt  — the first derivative, [—] t — time, [s]

e — the base of natural logarithms, [] X, y, z — displacements, [m]

i — imaginary unit, [—]

Jj —natural number, [] Greek symbols

n, N —positive integers, [—] K, A — spectral parameters, [—]
T —transposition, [-] m  — circumference ratio, [-]
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