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Under investigation in this paper is a new and more general non-isospectral and 
variable-coefficient non-linear integrodifferential system. Such a system is Lax in-
tegrable because of its derivation from the compatibility condition of a general-
ized linear non-isospectral problem and its accompanied time evolution equation 
which is generalized in this paper by embedding four arbitrary smooth enough 
functions. Soliton solutions of the derived system are obtained in the framework of 
the inverse scattering transform method with a time-varying spectral parameter. 
It is graphically shown the dynamical evolutions of the obtained soliton solutions 
possess time-varying amplitudes and that the inelastic collisions can happen be-
tween two-soliton solutions.
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Introduction

Non-linear PDE are often related to some non-linear natural phenomena, for example 
the celebrated Korteweg-de Vries (KdV) shallow-water wave equation which is used to de-
scribe the soliton phenomena is first observed by Russell [1]. In soliton theory, the non-isospec-
tral PDE are a kind of non-linear equations describing the solitary waves in a certain type of 
non-uniform media, while the isospectral PDE often describe solitary waves in lossless and 
uniform media. Recently, the investigation on derivations and solutions of non-isospectral PDE 
has attached much attentions [2-15]. In 2017, by introducing a new spectral parameter ikt = 0.5 
+ ik –2k2, Zhang and Hong [11] generalized the linear isospectral problem [3]:
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and its time evolution equation:
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where i is the imaginary unit, k – the spectral parameter independent of x, q = q(x, t), r = r(x, t) 
and their derivatives of any order with respect to x and t are smooth functions which vanish as 
x tends to infinity, and A, B, C are undetermined functions of x, t, q, r, and k. 
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Starting from eqs. (1) and (2) equipped with the parameter ikt = 0.5 + ik –2k2, Zhang 
and Hong [11] derived a non-isospectral integrodifferential system:
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In the present paper, we would like to consider a new and more general non-isospec-
tral and variable-coefficient integrodifferential system:
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where α = α(t), β0 = β0(t) , β1 = β1(t) and β2 = β2(t) are arbitrary smooth enough functions of t. 
There are maily three starting points of this paper: the first one is to derive system (4) by equip-
ping eqs. (1) and (2) with the generalized spectral parameter, k [12]:
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and the new generalized function, A: 
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the second one is to extend the inverse scattering transform (IST) with the time-varying spectral 
parameter (5) for constructing soliton solutions of system (4). The last one is to gain some in-
sights into the dynamical evolutions of the obtained soliton solutions. To the best of our knowl-
edge, such a system (4) is new and the IST has not been extended to system (4).

Derivation

Firstly, from the compatibility condition of eqs. (1) and (2) we have:
	 x tA qC rB ik= − − , 2 2t xq B ikB qA= + + , 2 2t xr C ikC rA= − − 	 (7)

which can be simplified:

	

2

0
2 (2 ) (2 )s

s
st

q B B q xq
L ik ik ik

r C C r xr
α β

=

− − − −          = − + +          
          
∑  	 (8)

by using eqs. (5) and (6).
Secondly, we suppose that:
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and substitute eq. (9) into eq. (8) and then have:
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by comparing the coefficients of 2ik in eq. (8). Here the operator L is defined by:
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Finally, from eqs. (10)-(12) we obtain system (4), which is Lax integrable.

Soliton solutions

Based on eqs. (1), (2), and (5) and the results in [2, 8-13], we have exact solutions:
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where K(x, y, t) = [K1 (x, y, t), K2 (x, y, t)]T satisfies Gel’fand-Levitan-Marchenko integral equation:
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are determined by the scattering data:

   
( , ) ( , )( ), ( ), ( , ) , 1, 2,..., , ( ), ( ), ( , ) , 1, 2, ,
( , ) ( , )j j m m

a k t a k tt c t R k t j n t c t R k t m n
b k t b k t

κ κ
   

= = = = ⋅⋅⋅   
   

	 (17)

which possess the following time-dependence:
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where κ2
j (0), κ    –2 m(0), c2

j(0) , c–2
m (0), R(k, 0) = b(k, 0)/a(k, 0) and R ¯(k, 0) = b ̄(k, 0)/a ̄(k, 0) are the 

scattering data of the generalized spectral problem (1) in the case of [q(x, 0), r(x, 0)]T
.

To construct soliton solutions, as did in [2] we set R(k, t) = R ¯(k, t) = 0 and have:
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Then we obtain the following n-soliton solutions of system (5):

	 1( , ) 2tr[ ( , ) ( , ) ( , )]Tq x t W x t x t x t−= Λ Λ 	 (22)
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where tr(⋅) denotes the trace of a given matrix, E is a n– × n– unit matrix and

	 1 2
1 2[ ( )e , ( )e , , ( )e ] ,ni xi x i x T

nc t c t c t κκ κΛ = 

   1 2
1 2[ ( )e , ( )e , , ( )e ]ni xi x i x T

nc t c t c t κκ κ −− −Λ =  	 (24)

	
( )( ) ( )

( , ) ( , ) ( , ), ( , ) e j mi xj mT

j m n n

c t c t
W x t E P x t P x t P x t κ κ

κ κ
−

×

 
= + =  

−  
	 (25)

Particularly, when n = n– = 1 eqs. (22) and (23) give the one-soliton solutions:
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where κ1(t) and κ–1(t) are , respectively, determined in eq. (18).
In figs. 1-5, the spatial structures and dynmical evolutions of the one-soliton solutions 

(26) and (27) are shown by selecting κ1(0) = 1, κ–1(0) = 0.5, c1(0) = –0.1, c–1(0) = 0.2, α = t2,  
β0 = 1, β1 = 1, and β2 =1.

The spatial structures and dynmical evolutions of the two-soliton solutions deter-
mined by eqs. (22) and (23) are shown in figs. 6-10, where κ1(0) = 1, κ–1(0) = 0.2, κ2(0) = –1.2,  
κ–2(0) = –0.5, c1(0) = –0.3, c–1(0) = –0.5, c2(0) = 1, c–2(0) = 2 and the others are same as figs. 1-5. It 
is easy to see from figs. 1-10 that the one-soliton solutions and the two-soliton solutions possess 
time-varying amplitudes. Besides, the inelastic collisions happen between two-soliton solutions.
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Figure 1. Spatial structures of one-soliton solutions (26) and (27)
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Conclusion

In summary, we have derived and solved the non-isospectral and variable-coefficient 
integrodifferential system (4). The arbitraryness of the smooth functions α = α(t), β0 = β0(t),  
β1 = β1(t), and β2 = β2(t) in the obtained n-soliton solutions provides with freedom to diss-
cuss the dynamical evolutions of solutions. It is shown when n = 1 and n = 2 the one-soliton 
solutions and the two-soliton solutions possess time-varying amplitudes and that the inelastic 
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Figure 2. Dynamical evolutions of one-soliton solution (26) at times; (a) t = –1, (b) t = –0.4 
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Figure 4. Dynamical evolutions of one-soliton solution (27) at times; (a) t = –1, (b) t = –0.2 
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Figure 3. Dynamical evolutions of one-soliton solution (26) at times; (a) t = 0.3, (b) t = 0.5



Xu, B., et al.: Derivation and Soliton Dynamics of a New Non-Isospectral ... 
S644	 THERMAL SCIENCE: Year 2019, Vol. 23, Suppl. 3, pp. S639-S646

collisions can happen between two-soliton solutions. To the best of our knowledge, system (4) 
and solutions (14), (22), and (23) have not been reported in literatures. How to extend the IST 
method to the non-linear PDE with non-integer derivatives [16-18] is worthy of study.
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Figure 6. Spatial structures of two-soliton solutions determined by (22) and (23)

Figure 7. Dynamical evolutions of two-soliton solution determined by (22) at times;  
(a) t = –0.1, (b) t = 0.1 
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Figure 5. Dynamical evolutions of one-soliton solution (27) at times; (a) t = 0.5, (b) t = 1.5 
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Figure 10. Dynamical evolutions of two-soliton solution determined by (23) at times;  
(a) t = –0.1, (b) t = 0.5
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d/dt 	 – the first derivative, [–]
E 	 – n– × n– unit matrix, [–] 
e 	 – the base of natural logarithms, [–]
i 	 – imaginary unit, [–] 
j 	 – natural number, [–]
k 	 – spectral parameter, [–] 
M, N 	– matrices, [–]
n, n– 	 – positive integers, [–]

s 	 – ositive integer, [–]
T 	 – transposition, [–]
t 	 – time, [s]
x, y, z 	– displacements, [m]

Greek symbol

π 	 – circumference ratio, [–]


