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Consider the non-linear local fractional heat equation. The fractional complex 
transform method and the Adomian decomposition method are used to solve the 
equation. The approximate analytical solutions are obtained.
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Introduction 

In present investigation, we consider the following non-linear local fractional heat 
equation:
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with the conditions: 
 	 ( ,0) ( )u x xϕ= 	 (2)

where k is a constant, ∂αu /∂tα and ∂2βu /∂x2β are the local fractional derivatives [1-5] (0 < α ≤ 1,  
0 < β ≤ 1), φ(x) and f(x, t) are given functions. 

The classical heat equation  is  one  of  the  most  important  PDE to model problems 
in mathematical physics [6-15]. The non-linear local fractional heat equation can be used to 
model the fractal electromagnetic radiation, the fractal seismology, the fractal acoustics and so 
on [1-5].

The linear heat equation involving local fractional derivative operators have been in-
vestigated over the last decade. In case of k = 0, α = β, the eq. (1) have been solved by applying 
the local fractional series expansion method and the local fractional variational iteration method 
[1-3]. The main objective of the present paper is to solve the problems (1)-(2) by means of the 
complex transform and Adomian decomposition method (ADM) [16, 17]. 

Preliminaries 

Local fractional derivative

In this section, we give some definitions and properties of local fractional derivative, 
for more detail see [1-5].

Definition 1. For arbitrary ε > 0, assume that the relation below exists:

 	 0( ) ( )f x f x αε− < 	 (3)
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with |x – x0| < δ. Then f(x) is called local fractional continuous at x0 which is denoted by  
limx→x0 

f(x) = f(x0). If f(x) is local fractional continuous on the interval (a, b), it is denoted: 

 	 ( ) ( , )f x C a bα∈

Definition 2. Let f(x) ∈ Cα(a, b) In fractal space, the local fractional derivative of f(x) 
of order at the point x = x0 is given by:
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where 
	 0 0[ ( ) ( )] ( 1)[ ( ) ( )]f x f x f x f xα∆ − ≅ Γ + −

 Local fractional partial derivative of high order is defined in the form:
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The following formula on local fractional derivative hold true:

 	 ( )d [ ( )] [ ( )] ( )
d
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x

α
α

α
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where there exist  f ′[g(x)] and g(α)(x).

Adomian decomposition method

To illustrate Adomian decomposition method [16], consider the following equation:

	 ( ) ( ) ( )L u N u f x+ = 	  (7)

where L is a linear operator, N – a non-linear operator, and f(x) is a given function. 
We can solve the eq. (7) by defining the unknown function:
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where the components un(x) are usually determined recurrently. The non-linear operator, N(u), 
can be decomposed into the following result:
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where An are called Adomian’s polynomials of u0, u1, u2...un defined:
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Substituting eqs. (8) and (9) into (7):
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i i
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+ =∑ ∑ 	 (11)

Thus, the components ui(x, t) of the solution u(x, t) can be computed by using the 
recursive relation:



Deng, S.: Approximate Analytical Solutions of Non-Linear Local ... 
THERMAL SCIENCE: Year 2019, Vol. 23, Suppl. 3, pp. S837-S841	 S839
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Finally, the k-term approximate solution of eq. (7) is given by:
	

0 1 1ku u u u −= + + +

Solution of the problem (1)-(2)

In this section, we consider the following initial value problem of non-linear local 
fractional heat equation:
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Where we assume that the functions f(x, t) and and φ(x) are local fractional continu-
ous.

To solve this eq. (13), we use the following fractional complex transform [17]:
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 By eq. (14), the problem (13) becomes:
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Next, we present the solutions of non-linear fractional heat eq. (17) by an application 
of the Adomian decomposition method.

For eq. (13), we have:
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Then, by eq. (12), we obtain:
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where 
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and so on.
Thus the n – term approximate solution of eq. (15): 

 	 0 1 2( , ) ( , ) ( , ) ( , ) ( , )nu X T u X T u X T u X T u X T= + + +

From eq. (14), we get the solution of eq. (15):

	 0 1 2( , ) ( , ) ( , ) ( , ) ( , )nu x t u x t u x t u x t u x t= + + + + 

Example 1. Consider eq. (1) in the form:

 	

22
2

2

2

2( ,0) exp
(1 )

u u uk u
xt x

xu x

α β

α β

β

β

 ∂ ∂ ∂ = −  ∂∂ ∂  


  = −  Γ + 
	 (19)

By the relations (18), we obtain:
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 Thus, by eq. (14), we obtain:
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Finally, the solution of eq. (19) is given by: 

	 0 1 2 3 4( , ) ( , ) ( , ) ( , ) ( , ) ( , )u x t u x t u x t u x t u x t u x t= + + + + +

When k = 0, α = β = 1, we have:
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which is close to the exact solution [18]: 
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Conclusion

In this paper, we consider a non-linear local fractional heat equation.The fractional 
complex transform and Adomian decomposition method are used to solve the equation. The 
approximate analytical solutions are obtained .We believe that for engineers and scientists the 
approximate analytical solutions would be quite useful to analyze the properties of the afore-
mentioned non-linear local fractional heat equation.
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