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In this paper, we consider a general fractional-order derivataive of the Liou-
ville-Caputo type with the non-singular kernel of the Rabotnov fractional-expo-
nential function for the first time. A new general fractional-order derivataive heat 
transfer model is discussed in detail. The general fractional-order derivataive for-
mula is a new mathematical tool proposed to model the anomalous behaviors in 
complex and power-law phenomena. 
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Introduction 

The general fractional-order derivatives, where the non-singular kernels are the spe-
cial functions, for more details see [1-3], such as exponential, Mittag-Leffler-Gauss, Kohlraus-
ch-Williams-Watts, Miller-Ross, Lorenzo-Hartley, Gorenflo-Mainardi, Bessel, Mittag-Leffler, 
Wiman, and Prabhakar, have been applied to investigate the mathematical models in mathemat-
ical physics. The general fractional-order diffusion was reported [4]. The general-order chemi-
cal kinetics via Mittag-Leffler kernel was proposed [5]. The general fractional-order relaxation 
via exponential kernal was discussed [6]. The general fractional-order rheologitcal model via 
Prabhakar kernel was considered [7]. The general fractional-order Burgers via Mittag-Leffler 
was investigated [8]. For more models via the special functions, we refer to the results for the 
relaxation and rheological arsising in complex and power-law phenomena [1]. 

The Rabotnov fractional-exponential function, proposed in 1954 by Rabotnov [9], 
was used to describe the viscoelasticity [10, 11]. However, up to now, the general fractional-or-
der derivative with the non-singular kernel of the Rabotnov fractional-exponential function [11] 
has not been developed. Motivated by the new idea, the main target of the paper is to propose 
the general fractional-order derivative with the non-singular kernel of the Rabotnov fraction-
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al-exponential function in the sense of Liouville-Caputo type and to investigate the general 
fractional-order derivataive heat transfer model. 

A new general fractional-order derivataive  
of the Liouville-Caputo type with the  
non-singular kernel of the Rabotnov  
fractional-exponential function

Let ℂ, ℝ, ℝ+
0, ℕ, and ℕ0 be the sets of complex numbers, real numbers, non-negative 

real numbers, positive integers and ℕ0 = {0} ∪ ℕ, respectively.

The Rabotnov fractional-exponential function

Let τ ∈ ℝ, α ∈ ℝ+
0, λ ∈ ℝ+

0, and κ ∈ ℕ0. The Rabotnov fractional-exponential function 
is defined as [1, 9]:
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and its Laplace transform is [1]:
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where the Laplace transform of the function ϕ(τ) is given as [1-3]:
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with s ∈ ℂ. 

A new general fractional-order derivataive with  
Rabotnov fractional-exponential kernel

Let L(a, b) be the set of those Lebesgue measurable functions on a finite interval  
(a, b)(–∞ ≤ a ≤ b ≤ +∞), for more details, see [1]. 

Let AC(a, b) be the space of the functions which are absolutely continuous on a finite 
interval (a, b)(–∞ ≤ a ≤ b ≤ +∞), for more details, see [1]. 

Let AC1(a, b) be the Kolmogorov-Fomin condition, for more details, see [1]. 
Let λ ∈ ℝ+

0 . The general fractional-order integral operator via Rabotnov fractional-ex-
ponential kernel is defined: 
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which leads 
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where a = 0 and Θ ∈ L(a, b)
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where Θ ∈ L(–∞, b). 
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The left-sided general fractional-order derivataive of the Liouville-Caputo type with 
the non-singular kernel of the Rabotnov fractional-exponential function is defined: 
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which can be written 
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where Θ ∈ AC1(a, b). 
The right-sided general fractional-order derivataive of the Liouville-Caputo type with 

the non-singular kernel of the Rabotnov fractional-exponential function is defined: 
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where Θ ∈ AC1(a, b). 
The left-sided general fractional-order derivataive of the Liouville-Caputo type with 

the non-singular kernel of the Rabotnov fractional-exponential function is defined:
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where Θ ∈ AC n(a, b) and n ∈ ℕ. 
The right-sided general fractional-order derivataive of the Liouville-Caputo type with 

the non-singular kernel of the Rabotnov fractional-exponential function is defined: 
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where n ∈ ℕ. 
The Laplace transforms of (5), (9), and (13) can be given:
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with r ∈ ℕ. 
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General fractional-order integrals  
via special function 

The left-sided general fractional-order integral of Ω(τ) is defined:
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with the Prabhakar function, denoted [1]: 

 ( ) ( )
( )
( ) ( ),

0

1
1

E
κ

γ
α β

κ

γ κ ττ
κα β γ κ

∞

=

Γ +
=

Γ + Γ Γ +∑

The right-sided general fractional-order integral of Ω(τ) is defined:
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For a = 0, eq. (19) can be written: 
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where Ω ∈ (a, b).
The Laplace transform of eq. (19) can be presented:
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A new application in the heat transfer process

In this section, a new general fractional-order derivataive heat transfer model is pre-
sented. 

We now consider the new general fractional-order derivataive heat transfer model: 

 ( ) ( )0 x xασ χΧ =  (23)

with the initial value condition: 
 ( ) ( )0 0x xΧ = = Χ  (24)

where σ represents the thermal conductivity of the material and χ – the heat flux density. 
With the use of eq. (17), we have: 
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Finally, we have the solution of the general fractional-order derivataive heat transfer 
model: 
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Conclusion

In our work, we have addressed the new general fractional-order derivataive of the Li-
ouville-Caputo type without the singular kernel of the Rabotnov fractional-exponential function 
and its Laplace transform. As an potential application, the general fractional-order derivative 
heat transfer model and its solution based on the general Prabhakar function have been investi-
gated in detail. The general fractional-order derivataive is accurate and efficient for description 
of the general fractional-order dynamics in complex and power-law phenomena. 
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Nomenclature

X(x)  – temperature distribution, [K]
x  – space co-ordinate, [m]
L[•]  – Laplace transform, [–]

Greek symbols

α  – fractional order, [–]
κ  – thermal conductivity, [Wm–1K–1]
χ  – heat flux density, [Wm–2] 
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