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In this paper, we consider the generalized local fractional 2-D Helmholtz equa-
tion in steady heat transfer process, which can be used to model the steady-state 
heat conduction in fractal media. The Yang-Fourier transform and Yang-Laplace 
transform method are used to solve the equation. The integral expression of the 
solutions is obtained in detail. 
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Introduction 

In the present investigation, we study the following local fractional 2-D Helmholtz 
equation in the steady heat transfer process, defined: 
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where k is a constant, ∂2αu/∂x2α and ∂2βu/∂y2β are the local fractional derivatives [1] (0 < α ≤ 1,  
0 < β ≤ 1), φ(x), ψ(x), and f(x, y) are given functions. 

The classical Helmholtz equation arise naturally in many physical applications such 
as elastic waves in solids including vibrating string, bars, membranes, electromagnetic waves, 
and the heat conduction in nuclear reactors [2, 3]. However, the classical calculus cannot be 
used to deal with some non-differentiable problems. The local fractional calculus is a powerful 
tool for studying them [4-17]. Here we use the local fractional 2-D Helmholtz eq. (1) to model 
the steady-state heat conduction in fractal media [18, 19].

The Helmholtz equation involving local fractional derivative operators have been in-
vestigated over the last decade [20, 21]. In case of α = β, the eq. (1) have been solved by ap-
plying the local fractional series expansion method and the local fractional variational iteration 
method, but they obtained only the approximate analytic solutions [22].

The main objective of the present paper is to solve the problems eqs. (1) and (2) by 
means of the Yang-Fourier transform and Yang-Laplace transform method [23, 24]. 
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Preliminaries 

In this section, we give some definitions and properties of local fractional derivative, 
Yang-Fourier transform and Yang-Laplace transform, for more detail see [1, 23, 24].

Definition 1. For arbitrary ε > 0, the relation: 

  0( ) ( )f x f x αε− <   (3)

exists with |x – xo| < δ. Then, f(x) is called local fractional continuous at x0, which is denoted by 
lim f(x) = f (x0). If

 
f(x) is local fractional continuous on the interval (a, b) we denote:

  f(x) ∈ Cα (a, b) 

Definition 2. Let f(x)
 
∈ Cα (a, b) In fractal space, the local fractional derivative of f(x) 

of order α at the point x – x0 is given [1]: 
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where
 0 0[ ( ) ( )] ( 1)[ ( ) ( )]f x f x f x f xα∆ − ≅ Γ + −

The local fractional partial derivative of high order is defined in the form [1]: 

  

times

( , ) ( , )

k

k

k

f x t f x t
x x x x

α α α α

α α α α

∂ ∂ ∂ ∂
=

∂ ∂ ∂ ∂



   (5)

Definition 3. A partition of the interval [a, b] is denoted as (tj, tj+1), j = 0, 1,...,N – 1,  
t0 = a and tN = b with Δtj = tj+1 – tj and Δt = max{Δt0, Δt1,... ΔtN}. The local fractional integral of 
f(x) in the interval [a, b] is defined [1]:
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We list two useful formulas of local fractional derivatives and integral [1]: 
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Definition 4. In the fractal space, the Mittag-Leffler function is defined:
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Definition 5. Let:
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The Yang-Laplace transforms of f(x) is defined:
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where the latter integral converges and sα ∈ Rα.
Definition 6. The inverse transform of the Yang-Laplace transforms of f(x) is defined:
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where sα = βα+ iαω ¯α, fractal imaginary unit iα and Re(s) = β > 0. 
The basic properties of local fractional Yang-Laplace transform are given. 
We have the following formulas: 
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where 1 < µ ≤ 2, 0 ≤ υ ≤ 1, ς > 0.
 Definition 7. If  f(x) ∈ Cα(a, b) then the Yang-Fourier transform is defined: 
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and its inverse Yang-Fourier transform: 
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The following formulas: 
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hold true, where  lim x→±∞(h) = 0.

The solution of the problem (1)-(2)

In this section, we consider the following problem of local fractional 2-D Helmholtz 
equation: 
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where the functions f(x, y), φ(x), and ψ(x) are local fractional continuous.
Let:
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It follows that: 
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Suppose that:
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Furthermore, by the inverse Yang-Fourier transform, we get the solution of the form: 
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Conclusion

In the present work, we considered a generalized local fractional 2-D Helmholtz equa-
tion. The Yang-Fourier transform and Yang-Laplace transform method were used to solve the 
equation. The integral expression of the solutions defined on the fractal sets was obtained. They 
are quite useful for engineers and scientists to analyze the behavior of the non-differentiable 
solution.
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Nomenclature

t    – time co-ordinate, [s]
x   – space co-ordinate, [m]

Greek symbol

α  – fractal order, [–]
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