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In this study effect of radiation on the viscoelastic Walter-B fluid is investigated 
with heat sink/source. Sakiadis, Blasius, and stagnation point flows are consid-
ered at constant surface temperature. Some suitable similarity variables have been 
utilized to transform governing equations into ODE. An iterative approach based 
on the Legendre wavelet spectral collocation method is applied for the solution of 
the resulting equations. The obtained results are validated by plotting the residual 
error curves in each case. Temperature and heat transfer rate at wall are analyzed 
to investigate the influence of involved parameters. It is found that the Legendre 
wavelet spectral collocation method is very efficient and can be employed for the 
solutions of various non-Newtonian flow problems. 
Key words: boundary-layer flow, heat transfer, radiation effects, wavelets, 

collocation method, shooting method

Introduction

The boundary-layer phenomenon in non-Newtonian fluids is of great interest for 
the recent researchers due to its applications in the industry and applied sciences. The bound-
ary-layer flow on the flat plate was studied by [1-6]. Sakiadis [2, 3] was the first who studied 
the flow on a moving plate by applying boundary-layer assumptions to the 2-D flow. The same 
problem by assuming a stretching velocity at the surface was first analyzed by Crane [4]. Heat 
transfer analysis for the boundary-layer flow due to continuously moving plate was investigated 
by Tsou et al. [7]. Takar et al. [8] discussed the impact of fluid properties for the boundary-layer 
flow of a viscous fluid due to a moving surface. Hiemenz [9] considered the boundary-layer 
approximation study the flow towards a stagnation point. Motivated by these pioneering works 
the 2-D flows utilizing the boundary-layer approximations have been investigated extensively 
in the literature [10-22] and references therein.

The influence of heat transfer along with thermal radiation effects on the flows inside 
boundary-layer in different situations have been investigated by several researchers [23-28]. In 
studies [23, 24] Cortell investigated the effects of radiations on the Sakiadis and Blasius flows 
for different emerging parameters. Impact of thermal radiation on the flow due to boundary-lay-
er over an exponentially stretching surface is examined by Sajid and Hayat [29]. These studies 
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are important in solar power technology, electrical power generation, cooling of electronic tools 
and nuclear reactors, satellites, space and other industrial areas.

Viscoelastic fluids have importance in industry, biological fluids, geophysics, etc. Due 
to this fact in recent years, the study of viscoelastic fluids gains considerable attention of re-
searchers working in this area. Some important investigations reflecting the viscoelastic effects 
are presented by [30-36]. Heat transfer in viscoelastic fluids due to boundary-layer in the pres-
ence of thermal radiations and constant suction is discussed by [37-39].

The present investigation is devoted to investigate radiation and heat source/sink ef-
fects for Blasius, Sakiadis, and stagnation point flows of Walter-B fluid [40]. The velocity pro-
file overshoot in these flows have already been discussed by Sajid et al. [41]. The same method 
presented in [40] is adopted here for solving the highly non-linear boundary value problems.

Mathematical formulation

The boundary-layer flow of viscoelastic Walter-B fluid is governed [40]:
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where u and v are, respectively, the horizontal and vertical velocity components,  
ρ – the density, P – the pressure, µ0 and k0 are coefficient of viscosity and viscoelastic parameter, 
respectively.

The energy equation with heat source/sink and radiations is given:
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in which T and T∞ are the fluid and free stream temperatures, respectively. Furthermore, cp, k1, 
Q, and qr denote the specific heat, thermal conductivity, volumetric rate of heat absorption/ 
generation, and radiative heat flux, respectively. Employing Rosseland approximations [42], 
we can write:
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where k* and σ* are, respectively, the mean absorption coefficient and Stefan-Boltzmann con-
stant. Following Bataller [42], T 4 can be expressed using Taylor series:

4 3 44 3T T T T∞ ∞≅ − (5)
Using eqs. (4) and (5), eq. (3) implies:
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We are aiming to discuss the Blasius, Sakiadis, and stagnation point flows. Boundary 
conditions for the considered flow situations for Blasius and stagnation point flows:

( ) ( ) ( ) ( ) ( ) 0 0 0,  0 ,  ,  wu v T T u U T T∞ ∞= = = ∞ = ∞ = (7)
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and for Sakiadis flow boundary conditions:

( ) ( ) ( ) ( ) ( )  0 , 0 0, 0 ,  0,  w wu U v T T u T T∞= = = ∞ = ∞ = (8)

in which U∞ and Uw are, respectively, the free stream and wall velocities. Furthermore, free 
stream velocity for the stagnation point flow is U∞ = ax.  Also Tw is the surface temperature.

Equation (2) can be transformed to ODE by a choice of suitable transformations [42]:

( ) ( ),  ,  
w

U T TxU f
xy T T

ψ ν η η θ η
υ

∞ ∞
∞

∞

−
= = =

−
(9)

such that ∂ψ/∂y = u and –∂ψ/∂x = v.
Therefore, in the transformed variables we have:

( )21 K 2 0 for Blasius and akiadis flow
2

ivf ff ff f f f S′′′ ′′ ′ ′′+ + + − =′′′ (10)

( )2 2' 1 K 2 0 for stagnation point flowivf ff f ff f f f ′′+ − + + − +′′′ ′′ ′ ′′′ = (11)

where K = k0U∞ /2µx denotes the local Weissenberg number in the case of Blasius and Sakiadis 
flows and is a constant Weissenberg number for stagnation point flow. Energy equation in trans-
formed co-ordinates takes the form: 

eff
1Pr 0 (for Blasius andSakiadis flow)
2

fθ θ λθ + +′ ′ 
 

′ = (12)

( )effPr 0 (for stagnation point flow)fθ θ λθ′′ ′+ + = (13)

in which Preff = Pr/(1 + Nr) denotes the effective Prandtl number as discussed by [39],  
Nr = 16σ*T3

∞ /3k*k1 represents radiation parameter and  λ = Qx/ρcpU∞ the heat sink (λ < 0)  or 
source (λ > 0) parameter. Boundary conditions for the considered flow problems:

( ) ( ) ( ) ( ) ( )0 0 0, 0 1, 1, 0 (for Blasius andstagnation flow)f f fθ θ= = = ′ ∞ =′ ∞ = (14)

     ( ) ( ) ( ) ( ) ( )0 0,  0 1,  0 1, 0, 0 (forSakiadis flow)f f fθ θ= = = ′ ∞ =′ ∞ = (15)

Numerical solutions

In this section we briefly explain the numerical technique known as legendre wavelet 
spectral collocation method (LWSCM) [41] used to solve the considered problems. In the first 
step eqs. (10) and (12) are converted into initial value problems via shooting method. Letting 
f ″(0) = s and θ′(0) = s1, and differentiating eq. (10) w.r.t. s and eq. (12) w.r.t. s1 along with their 
boundary conditions:
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In the next step the domain 0 ≤ η < η∞ is divided into subintervals [(n – 1) /2k–1, n / 2k–1 ] 
in which n = 1,... 2k–1η∞. Therefore:
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 − = ≠ ∈  


(19)

where

	

( ) ( )
1
2 2

1 1
1 12 2 2 1 , 
2 2 2

0, otherwise

k
k

m k klj

n nm L nη ηχ η − −

 
−   + − + ≤ < =    

  

are discrete wavelets in which k = 1,2,..., η∞, n = 1, 2,..., 2k–1η∞. Legendre wavelet interpolation 
approximation the functions f(η) and θ(η) on the nth subinterval is given:
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Similarly, one can define:
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where xj are the Legendre-Gauss collocation points and wj the corresponding weights. In fact, 
xj are the roots of Lm(x) in the interval (–1, 1) arranged in ascending order. Applying the points  
{xnj|n = 1,..., 2k–1η∞, j = 3,..., M – 1}into governing initial value problems:
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( ) ( ) ( ) ( ) ( )1 1 1 1 1 10 0,  0 0,  0 ,  0 1,  0F F F s sθ θ′ ′′ ′= = = = = (30)

( ) ( ) ( ) ( ) ( )1 1 1 1 10 0,  0 0,  0 1,  0 0,  0 1G G G T T′ ′′ ′= = = = = (31)

The initial value problems (26)-(31) are solved using parallel shooting technique in 
which solutions in the preceding subinterval provides the initial conditions for the next sub-
interval. The values of s and s1 are modified using Newton’s method so that F2k–1η∞′(η∞), = 1,  
θ2k–1η∞′(η∞), = 0. The appropriate values of M and k are chosen to obtain an accuracy of 10–6. 
Sakiadis and stagnation point flow problems can be solved in the same way.

Numerical results and discussion

The mathematical models developed for analysis of heat transfer in Blasius, Sa-
kiadis, and stagnation point flows are solved numerically by implementing LWSCM tech-
nique. To ensure that the obtained solutions are convergent and accurate residual errors in 
all the cases have been plotted in fig.1. The figure elaborates that the obtained solutions are 
within an accuracy of 10–6. 

Variation in the fluid temperature, θ, against the physical parameters is illustrated in 
figs. 2-4. Our main attention is focused to see the influence of Preff, λ, and K on the fluid tem-
perature, θ, inside the boundary-layer. Effects of Weissenberg number on the θ for the Blasius 
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Figure 2. Influence of 
Weissenberg number on the 
temperature for (a) Blasius 
flow, (b) Sakiadis flow, and  
(c) stagnation point flow

Figure 3. Influence of 
parameter λ on the temperature 
for (a) Blasius flow, (b) and 
Sakiadis flow, and (c) stagnation 
point flow
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flow are displayed in fig. 2(a). This figure depicts that temperature and thermal boundary-layer 
thickness decrease by increasing Weissenberg number. It is concluded from fig. 2(a) that the 
viscoelastic nature of the fluid reduces the temperature. The similar observation is noted in the 
case of Sakiadis and stagnation point flows, see figs. 2(b) and 2(c). 

Figure 3 depicts an increase/decrease in the temperature and thermal boundary-layer 
thickness with heat source/sink in all the three considered flow situations. 

Variation in the temperature against the effective Prandtl number, Preff, is elaborated 
in fig. 4. According to this figure, fluid temperature and thermal boundary-layer thickness de-
crease with an increase in Preff. This decrease in the value of θ is due to the fact that Preff is di-
rectly proportional to the Prandtl number and inversely proportional to the radiation parameter.

To analyze the surface heat transfer rate against Preff and λ, tabs. 1-3 have been plotted 
for Blasius, stagnation point, and Sakiadis flows. This table shows that heat transfer rate in-
creases by increasing heat source and decreases by increasing heat sink. The table also depicts 
that heat transfer rate increases by increasing Preff. Similar behavior is noted in tabs. 2 and 3 for 
the Sakiadis and stagnation point flows.

Table 1. Variation in θ′(0) against Preff and λ for Blasius flow when K = 0.2 

Preff λ = –0.3 λ = –0.2 λ = 0 λ = 0.05 λ = 0.2

0.7 –0.508088          –0.441539	 –0.280936 –0.232344 –0.051440

1 –0.598573          –0.516683	 –0.315068 –0.252399 –0.007691

θ η( )

Pr = 0.7, 1, 2, 3, 5eff

λ = –0.2, K = 0.2

η
0 1 2 3 4 5

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

θ η( )

0 2 4 6 8
η

Pr = 0.7, 1, 2, 3, 5eff

λ = 0.1, K = 0.2

(a) (b)

θ η( )

η
0 1 2 3

1.0

0.8

0.6

0.4

0.2

0.0

Pr = 0.7, 1, 5, 10, 100eff

λ = –1.0, K = 0.1

(c)

Figure 4. Influence of Preff on the 
temperature for (a) Blasius flow, 
(b) Sakiadis flow, and  
(c) stagnation point flow
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Table 2. Variation in θ′(0) against Preff and λ for stagnation point flow when K = 0.1 
Preff λ = –5 λ = –1 λ = 0 λ = 0.1
0.7 –1.898130 –0.948779 –0.560127 –0.513127
1 –2.264172 –1.112076 –0.614666 –0.551946
5 –5.031365 –2.372691 –1.076984 –0.890872
10 –7.103287 –3.308321 –1.383130 –1.092058

Table 3. Variation in θ′(0) against Preff and λ for Sakiadis flow when K = 0.2 
Preff λ = –0.05 λ = –0.01 λ = 0 λ = 0.05 λ = 0.1
0.7 –0.397338 –0.356621 –0.345555 –0.283274 –0.202051
1 –0.495604 –0.450697 –0.438551 –0.371873 –0288115
3 –0.941025 –0.879018 –0.862491 –0.775317 –0.679052
5 –1.249001 –1.171096 –1.150972 –1.045640 –0.931322
10 –1.809997 –1.704664 –1.67702 –1.536881 –1.385855

Conclusion

In this study, we have applied an iterative approach based on the LWSCM to pres-
ent a boundary-layer analysis for the heat transfer in a Walter-B viscoelastic fluid for three 
cases namely Blasius, Sakiadis, and stagnation point flows. Numerical solutions are obtained 
to discuss heat transfer characteristics during the flow. The results are given for temperature 
distribution for the influence of various pertinent parameters. It is found that the temperature 
of the fluid is decreased for the Weissenberg and Prandtl numbers. Also it is noticed that the 
proposed algorithm is very efficient and one can apply it on various flow problems regarding in 
non-Newtonian fluids.
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