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The fundamental purpose of this paper is to propose a new Laplace-type integral 
transform for solving steady heat transfer problems. The proposed integral trans-
form is a generalization of the Sumudu, and the Laplace transforms and its visu-
alization is more comfortable than the Sumudu transform, the natural transform, 
and the Elzaki transform. The suggested integral transform is used to solve the 
steady heat transfer problems, and results are compared with the results of the 
existing techniques. 
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Introduction 

For more than 150 years, the motivation behind integral transforms is easy to under-

stand. The integral transforms have a widely-applicable spirit of converting differential opera-

tors into multiplication operators from its original domain into another domain. Besides, the 

symbolic manipulating and solving the equation in the new domain is easier than manipula-

tion and solution in the original domain of the problem [1-8]. The inverse integral transforms 

are always used to mapped the manipulated solution back to the original domain to obtain the 

required result. 

In the mathematical literature, the famous classical integral transforms used in differ-

ential equations, analysis, theory of functions and integral transforms are the Laplace transform 

[9] which was first introduced by a French mathematician Pierre-Simon Laplace (1747-1827), 

the Fourier integral transform [10] devised by another French mathematician Joseph Fourier 

(1768-1830), and the Mellin integral transform [11] which was introduced by a Finnish mathe-

matician Hjalmar Mellin (1854-1933). Besides, the Laplace transform, the Fourier transform, 

and the Mellin integral transforms are similar, except in different coordinates and have many 

applications in science and engineering [12]. Moreover, in mathematics there are many Laplace-

types integral transforms such as the Laplace-Carson transform used in the railway engineering 

[13], the z-transform applied in signal processing [14], the Sumudu transform used in engineer-

ing and many real-life problems [15], the Hankel’s and Weierstrass transform applied in heat 

and diffusion equations [16, 17]. In addition, we have the natural transform [18] and Yang trans-

form [19, 20] used in many fields of physical science and engineering. 

This paper aims to further introduce a suitable Laplace-type integral transform for 

solving steady heat transfer problems. We will prove some important theorems and properties 
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of the suggested integral transform and illustrated their applications. In the next section, we 

begin with the definition of the proposed Laplace-type integral transform and introduce some 

useful theorems of the integral transform. 

Definition and theorems 

Definition 1. The new Laplace-type integral (NL-TI) transform of the function v(t) 
of exponential order is defined over the set of functions: 

1 2( ) : , , , 0, | ( ) | e , if ( 1) [0, )i

t
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where  is the NL-TI transform operator. It converges if the limit of the integral exists, and 

diverges if not. 

The inverse NL-TI transform is given by: 

 1[ ( , )] ( ), for 0V s u v t t    (2) 

Equivalently, the complex inversion formula of the NL-TI transform is given by: 
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where s and u are the NL-TI transform variables, and  is a real constant. The integral in eq. 

(3) is computed along s =  in the complex plane s = x + iy.  
Theorem 1. The sufficient condition for the existence of the NL-TI transform. If the 

function v(t) is piecewise continues on every finite interval [0, t0] and satisfies: 

 | ( ) | e tv t C   (4) 

for all t Î [t0, ¥), and a constant , then [v(t)](s, u) exists for all s/u > . 

Proof. To prove the Theorem 1, we must first show that the improper integral con-

verges for s/u > . Without loss of generality, we first split the improper integral into two 

parts namely:  

 
0

0

( / ) ( / ) ( / )

0 0

e ( )d e ( )d e ( )d

t

st u st u st u

t

v t t v t t v t t

 
       (5) 

The first integral on the right hand side of eq. (5) exists by the first hypothesis, 

hence the existence of the Laplace-type integral transform completely depends on the second 

integral. Then by the second hypothesis we deduce: 
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Thus: 
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Hence, eq. (7) converges for  < s/u. This implies by the comparison test for im-

proper integrals theorem, [v(t)](s, u) exists for all  < s/u. This complete the proof. 

In the next theorem, we prove the uniqueness of the NL-TI transform. 

Theorem 2. Uniqueness of the NL-TI transform. 

Let v(t) and w(t) be continuous functions defined for t ≥ 0 and having NL-TI trans-

forms of V(s, u) and W(s, u), respectively. If V(s, u) = W(s, u), then v(t) = w(t). 
Proof. From the inverse NL-TI transform eq. (3), we have: 
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Since V(s, u) = W(s, u) by the second hypothesis, then replacing this in eq. (8), we 

obtain: 
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This implies: 
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Hence, eq. (10) proves the uniqueness of the NL-TI transform. 

Theorem 3. Convolution theorem of the NL-TI transform. Let the functions v(t) and 

w(t) be in set A. If V(s, u) and W(s, u) are the NL-TI transforms of the functions v(t) and w(t), 
respectively, then: 

 [(v w)(t)] = V(s, u) W(s, u) (11) 

Where w*v is the convolution of two functions v(t) and w(t) which is defined:  
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Proof. Based on eqs. (1) and (12), we get:  
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Substituting  = t –  in the inner integral, we deduce:  
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This complete the proof. 

Theorem 4. Derivative of the NL-TI transform. Suppose that [v(t)](s, u) exists and 

that v(t) is differentiable n-times on the interval (0, ¥) with n
th
 derivative v

(n)
(t), then: 
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Proof. Using Definition 1 of the NL-TI transform and integration by parts, we de-

duce:  
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Finally, eq. (17) follows using mathematical induction. 
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In the next theorems, we prove the NL-TI transform of Riemann-Liouville fractional 

derivative D ( )RL
t v t  [6], and the Caputo fractional derivative D ( )C

t v t  [6]. 

Theorem 5. The NL-TI transform of Riemann-Liouville fractional derivative.  

If  > 0, n = 1 + [ ] and v(t), I
n–

v(t), (d/dt)I
n–

v(t), …, (d
n
/dt

n
)I

n–
v(t), 

RL
D v(t) ÎA, then: 
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where I  is the Riemann-Liouville fractional integral.  

Proof. Since D ( ) (d /d ) ( ).n n nRL
t v t t I v t  Let g(t) = I

n–
v(t), then D ( )RL

t v t   

(d /d ) ( ).n nt v t  Applying the hypothesis of Theorem 4, we get: 

11
( )

0

D ( ) [ ( )] (0 )

n n kn
RL k

t

k

s s
v t v t v

u u

 

 



                
  

1 11

1
0

d
[ ( )] (0 )

d

n k kn
n

k
k

s s
v t I v

u u t




  





   
     
   

  

The proof ends. 

Theorem 6. The NL-TI transform of Caputo fractional derivative. Assume  > 0,  

n = 1 + [ ], and: 
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where DC
t
  is the Caputo fractional derivative. 

Proof. Applying the Caputo fractional derivative [6] and Theorem 3, we deduce: 
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Finally, using the hypothesis of Theorem 4 yields:  
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This completes the proof. 

Some properties of the NL-TI transform 

Property 1. Linearity property of the NL-TI transform. Let [v(t)](s, u) = V(s, u) and 

[w(t)](s, u) = W(s, u), then: 

 [ v(t) + w(t)](s, u) = [v(t)](s, u) + [w(t)](s, u) (23) 

where  and  are constants. 
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Proof. Linearity property follows directly from Definition 1. 

Property 2. Exponential shifting property of the NL-TI transform. Let the function 

v(t) ÎA and  is an arbitrary constant, then: 

 [e
t
v(t)](s, u) = V(s – u, u) (24) 

Proof. Using Definition 1 of the NL-TI transform, we get: 
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In particular: 
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Based on Definition 1, the NL-TI transform of sin(3t) is given by: 
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So, replacing the variable s with (s + 4u) in eq. (28), we obtain:  
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Moreover: 

 

22

2 2

2

1
, 1,  Laplace transform [6]

( )
( e )( , )

( )
, 1,  Yang transform [19]

(1 )

t

u
su

t s u
s u u

S
u













  

  
 

 (31) 

This complete the proof.  
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Property 3. New Laplace-type transform of integral. Let [v(t)] = V(s, u) and 

v(t) ÎA, then: 
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Proof. Let w(t) = 0 ( )d ,
t
v   then w (t) = v(t) and w(0) = 0. Computing the NL-TI 

transform of both sides, we get: 
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This completes the proof. 

Property 4. Multiple shift property of the NL-TI transform. Let [v(t)](s, u) = V(s, u) 

and v(t) ÎA, then: 
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Proof. By Definition 1 of the NL-TI transform and Leibniz’s rule, we obtain: 
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Thus, eq. (36) proves the theorem for n = 1. To generalized the theorem, we apply 

the induction hypothesis. Let assume the theorem holds for n = k that is:  
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Alternatively, using Leibniz’s rule, we deduce: 
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This implies: 
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Since, eq. (40) holds for n = k + 1, then by induction hypothesis the prove is com-

plete. 

Applications 

In this section, we illustrate the applicability of the proposed Laplace-type integral 

transform on steady heat transfer problems to proves its efficiency and high accuracy. 

Example 1. Consider the following steady heat transfer problem:  

 ( ) ( )
pchMv t v t    (41) 

subject to the initial condition: 

 v(0) =  (42) 

where h is the convection heat transfer coefficient, M – the surface area of the body,  – the 

density of the body,  – the volume, cp – the specific heat of the material, and v(t) – the tem-

perature. 

Applying the NL-TI transform on both sides of eq. (41), we get:  

 ( , ) ( , ) (0)
pc

s
hMV s u V s u v

u


 
   

 
 (43) 

Substituting the given initial condition and simplifying, we get:  

 ( , )

pc

u
V s u

hM
s u









 (44) 

Taking the inverse NL-TI transform of eq. (44), we get:  

 ( ) e
cp

hM
t

v t





  (45) 

The exact solution is in excellent agreement with the result obtained in [5, 20]. 

Example 2. Consider the following steady heat transfer problem:  

 vt(x, t) = 2vxx(x, t),    0 < x < 5,    t > 0 (46) 

Subject to the boundary and initial conditions: 

 v(0, t) = 0,   v(5, t) = 0,   v(x, 0) = 10 sin(4πx) – 5sin(6πx) (47) 

Applying the NL-TI transform on both sides of eq. (46), we deduce:  

 
2

2

2d ( , , )
( , , ) ( ,0)

d

s V x s u
V x s u v x

u x
   (48) 
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Substituting the given initial condition and simplifying, we get:  

 
2

2

2d ( , , )
( , , ) 10sin(4π ) 5sin(6π )

d

V x s u s
V x s u x x

ux
     (49) 

The general solution of eq. (49) can be written:  

 V(x, s, u) = Vh(x, s, u) + Vp(x, s, u) (50) 

where Vh(x, s, u) is the solution of the homogeneous part which is given: 

 
( / ) ( / )

1 2( , , ) e e
s u x s u x

hV x s u  


   (51) 

and Vp(x, s, u) is the solution of the inhomogeneous part which is given by:  

 Vp(x, s, u) = sin(4πx) – sin(6πx) (52) 

Applying the boundary conditions on eq. (51), yields: 

 
( / ) ( / )

2 1 20 e e 0 ( , , ) 0
s u x s u x

hV x s u   


        (53) 

since 1 = 2 = 0. 

Using the method of undetermined coefficients on the inhomogeneous part, we get:  

 
2 2

( , , ) 10sin(4π ) 5sin(6π )
32π 72π

p

u u
V x s u x x

s u s u
 

 
 (54) 

since  = 10[u/(s + 32π
2
u )] and  = –5[u/(s + 72π

2
u)]. 

Then eq. (50) will become:  

 
2 2

( , , ) 10sin(4π ) 5sin(6π )
32π 72π

u u
V x s u x x

s u s u
 

 
 (55) 

Taking the inverse NL-TI transform of eq. (55), we obtain:  

 
2 232π 72π( , ) 10e sin(4π ) 5e sin(6π )t tv x t x x    (56) 

The exact solution is the same with the result obtained in [9]. 

Example 3. Consider the following fractional porous medium equation:  

 D ( , ) D [ ( , )D ( , )], 0 1t x xv x t v x t v x t     (57) 

subject to the initial condition: 

 v(x, 0) = x (58) 

Applying Theorem 6 on eq. (57) subject to the initial condition, we obtain:  

 [ ( , )] {D [ ( , )D ( , )]}x x

u u
v x t x v x t v x t

s s




    (59) 

Computing the inverse NL-TI transform on both sides of eq. (59), we deduce:  

 1( , ) {D [ ( , )D ( , )]}x x

u
v x t x v x t v x t

s




 

 
    

 
 (60) 
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Based on the basic idea of the HAM, see [6] and references therein, we have:  

 
0

( , ) ( , )n
n

n

v x t p v x t




  (61) 

Then eq. (60) will become:  

 1

0 0

( , ) Dn n
n x n

n n

u
p v x t x p p H

s




 

 


 

     
      
       

   (62) 

where Hn is the He’s polynomials [6] which represent the non-linear terms v(x, t)Dxv(x, t). 
Some few components of the non-linear terms Hn are computed: 

H0 = v0v0x,    H1 = v0v1x + v1v0x,    H2 = v0xv2 + v1xv1 + v1xv0, …      

On comparing the coefficients of same powers of p in eq. (62), we get the following 

approximations: 

 

0
0

1 1
1 0

: ( , )

: ( , ) [D ( )]
Γ(1 )

x

p v x t x

u t
p v x t H

s

 


 







  
  

  

 

 2 1
2 1: ( , ) [D ( )] 0x

u
p v x t H

s




 

  
  

  

 

 
1

1: ( , ) [D ( )] 0, for 2n
n x n

u
p v x t H n

s




 



  
   

  

 

Then the solution of eqs. (57) and (58) is given by:  

 ( , )
Γ(1 )

t
v x t x




 


 (63) 

The result obtained in eq. (63) is in excellent agreement with the result obtained in 

[6]. The special case of eq. (63) when  = 1 is given by: 

 v(x, t) = x + t (64) 

The result of eq. (64) is in closed agreement with the result obtained in [6, 7].  

Conclusion 

In this paper, we introduced a powerful Laplace-type integral transform for finding a 

solution of steady heat transfer problems. The proposed Laplace-type integral transform con-

verges to both Yang transform, and the Laplace transforms just by changing variables. Many 

interesting properties of the suggested integral transform are discussed and successfully ap-

plied to steady heat transfer problems. Finally, based on the efficiency and simplicity of the 
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Laplace-type integral transform, we conclude that it is a powerful mathematical tool for solv-

ing many problems in science and engineering. 
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Nomenclature 

cp – convection of heat transfer coefficient,  
   [Jkg–1K–1] 

h – convection heat transfer coefficient,  
   [Wm–2K–1] 

x, t  – space co-ordinates, [m] 
v(t) – temperature, [K] 
v(x, t) – temperature, [K] 
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