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From the Guest Editor 

The heat flow is important to describe the complex freezing and heat transfer be-

haviors in the biological and mining-rock materials. There are the mathematical models for 

the heat condition in the different operators (for more details, see [1]), such as Newton-

Leibniz calculus, fractional calculus, local fractional calculus (also called the fractal calcu-

lus), and general fractional calculus. The heat-condition equation via the Newton-Leibniz 

calculus was presented in [2, 3]. The fractional-time and/or fractional-space heat-condition 

equation was discussed in [4, 5]. The local fractional heat-condition equation was given in 

[6, 7]. The general time-fractional heat-condition equations were suggested in [8, 9]. Due to 

the complex behaviors of the materials, it is still an open problem for the heat conduction.  

The fluid-flow is considered to present the process of the fluid dynamics of the 

liquid and gas in motion. A great many of the PDE in fluid mechanics, such as generalized 

Kuramoto-Sivashinsky [10], Korteweg-De Vries [11-13], advection-reaction-diffusion [14], 

Klein-Gordon [15, 16], and Navier-Stokes [17, 18] equations, were discussed based on the 

differential operators. Moreover, there are some mathematical coupling models for the solid 

liquid and gas involving the heat and fluid-flow. In view of the investigation, there is an 

open problem for the linear and non-linear heat and fluid-flow.  

In the special issue, we mainly considered the advanced computational methods 

for the linear and non-linear heat and fluid-flow and the topics on the heat-conduction and 

related problems in the mining-rock materials. We received the 160 manuscripts, and we se-

lected 51 papers for publication as a regular volume. I would like to express thanks for Prof. 

Dr. Simeon Oka and Dr. Vukman Bakić to support and help to publish the special issue. 
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