From the Guest Editor

The heat flow is important to describe the complex freezing and heat transfer behaviors in the biological and mining-rock materials. There are the mathematical models for the heat condition in the different operators (for more details, see [1]), such as Newton-Leibniz calculus, fractional calculus, local fractional calculus (also called the fractal calculus), and general fractional calculus. The heat-condition equation via the Newton-Leibniz calculus was presented in [2, 3]. The fractional-time and/or fractional-space heat-condition equation was discussed in [4, 5]. The local fractional heat-condition equation was given in [6, 7]. The general time-fractional heat-condition equations were suggested in [8, 9]. Due to the complex behaviors of the materials, it is still an open problem for the heat conduction.

The fluid-flow is considered to present the process of the fluid dynamics of the liquid and gas in motion. A great many of the PDE in fluid mechanics, such as generalized Kuramoto-Sivashinsky [10], Korteweg-De Vries [11-13], advection-reaction-diffusion [14], Klein-Gordon [15, 16], and Navier-Stokes [17, 18] equations, were discussed based on the differential operators. Moreover, there are some mathematical coupling models for the solid liquid and gas involving the heat and fluid-flow. In view of the investigation, there is an open problem for the linear and non-linear heat and fluid-flow.

In the special issue, we mainly considered the advanced computational methods for the linear and non-linear heat and fluid-flow and the topics on the heat-conduction and related problems in the mining-rock materials. We received the 160 manuscripts, and we selected 51 papers for publication as a regular volume. I would like to express thanks for Prof. Dr. Simeon Oka and Dr. Vukman Bakić to support and help to publish the special issue.

Acknowledgement

This work was supported by the financial support of the 333 Project of Jiangsu Province, People's Republic of China (Grant No. BRA2018320) and the Yue-Qi Scholar of the China University of Mining and Technology (Grant No. 102504180004).

References

- [1] Yang, X. J., *General Fractional Derivatives: Theory, Methods and Applications*, Chapman and Hall/CRC, New York, USA, 2019
- [2] Cannon, J. R., *The One-Dimensional Heat Equation*, Cambridge University Press, New York, USA, 1984
- [3] Yang, X. J., A New Integral Transform Operator for Solving the Heat-diffusion Problem, Applied Mathematics Letters, 64 (2017), Feb., pp. 193-197
- [4] Povstenko, Y. Z., Theory of Thermoelasticity Based on the Space-Time-Fractional Heat Conduction Equation, *Physica Scripta*, 2009 (2009), T136, ID 014017
- [5] Povstenko, Y. Z., Fractional Heat Conduction Equation and Associated Thermal Stress, Journal of Thermal Stresses, 28 (2004), 1, pp. 83-102
- [6] Yang, X. J., et al., A New Family of the Local Fractional PDEs, Fundamenta Informaticae, 151 (2017), 1-4, pp. 63-75
- [7] Zhang, Y., et al., Local Fractional Homotopy Perturbation Method for Solving Non-Homogeneous Heat Conduction Equations in Fractal Domains, *Entropy*, 17 (2015), 10, pp. 6753-6764
- [8] Yang, X. J., et al., Fundamental Solutions of the General Fractional-Order Diffusion Equations, Mathematical Methods in the Applied Sciences, 41 (2018), 18, pp. 9312-9320

- [9] Yang, X. J., *et al.*, Fundamental Solutions of Anomalous Diffusion Equations with the Decay Exponential Kernel, *Mathematical Methods in the Applied Sciences*, *42* (2019), 11, pp. 4054-4060
- [10] Mohanty, R. K., et al., High Accuracy Two-Level Implicit Compact Difference Scheme for 1-D Unsteady Biharmonic Problem of First Kind: Application to the Generalized Kuramoto–Sivashinsky Equation, Journal of Difference Equations and Applications, 25 (2019), 2, pp. 243-261
- [11] Pelinovsky, D. E., et al., Helical Solitons in Vector Modified Korteweg-de Vries Equations, Physics Letters A, 382 (2018), 44, pp. 3165-3171
- [12] Yang, X. J., et al., Modelling Fractal Waves on Shallow Water Surfaces via Local Fractional Korteweg-De Vries Equation, Abstract and Applied Analysis, 2014 (2014), ID 278672
- [13] Yang, X. J., et al., On Exact Traveling-Wave Solutions for Local Fractional Korteweg-de Vries Equation, Chaos, 26 (2016), 8, pp. 1-8
- [14] Nevins, T. D., et al., Optimal Stretching in Advection-Reaction-Diffusion Systems, Physical Review Letters, 117 (2016), 16, ID 164502
- [15] Cote, R., et al., Multi-Travelling Waves for the Nonlinear Klein-Gordon Equation, Transactions of the American Mathematical Society, 370 (2018), 10, pp. 7461-7487
- [16] Kumar, D., et al., A Hybrid Computational Approach for Klein-Gordon Equations on Cantor Sets, Nonlinear Dynamics, 87 (2017), 1, pp. 511-517
- [17] Wang, K. L., et al., Analytical Study of Time-Fractional Navier-Stokes Equation by Using Transform Methods, Advances in Difference Equations, 2016 (2016), 61
- [18] Yang, X. J., et al., Systems of Navier-Stokes Equations on Cantor Sets, Mathematical Problems in Engineering, 2017 (2017), ID 769724

Guest Editor

Xiao-Jun Yang

State Key Laboratory for Geomechanics and Deep Underground Engineering, China University of Mining and Technology, Xuzhou, China