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We introduce a new notion of transitive relative return rate and present its applica-
tions based on the stochastic differential equations. First, we define the notion of a 
relative return rate and show how to construct the transitive relative return rate 
(TRRR) on it. Then, we state some propositions and theorems about relative return 
rate and TRRR and prove them. Moreover, we exhibit the theoretical framework of 
the generalization of TRRR for 3n ≥  cases and prove it, as well. Furthermore, we 
illustrate our approach with real data applications of daily relative return rates for 
Borsa Istanbul-30 (BIST-30) and Intel Corporation indexes with respect to daily 
interest rate of Central Bank of the Republic of Turkey between June 18, 2003 and 
June 17, 2013. For this purpose, we perform simulations via Milstein method. We 
succeed to present usefulness of the relative return rate for the relevant real large 
data set using the numerical solution of the stochastic differential equations. The 
simulation results show that the proposed closely approximates the real data.
Key words: stochastic differential equations, transitive relative return rate, 

numerical solution of stochastic differential equations,  
Milstein method

Introduction

It is challenging to find a proxy between stochastic variables in the financial markets 
since it is hard to explain and control their relationship caused by the naturalness of them. Our 
aim in this paper is to present a proxy for return rates, which helps to explain and understand 
their relative behavior with respect to the others. The relative return rate (RRR) approximation 
can be useful for economists, investors or practitioners when they want to analyze and give an 
expectation for any security, whose return rate is not known at the time of its analysis, just by 
using the RRR instead of its return rate. For this purpose, we mathematically define the RRR 
and prove some propositions and theorems about this notion. Moreover, we extend this approx-
imation to the TRRR, which gives the approximate return rate value with respect to others. The 
most important aspect of this extension is that it may explain the relation between the three 
securities. After that, using the chain rule as a motivation we generalize TRRR for more than 
three securities so that the RRR of any security with respect to the security being considered 
can be obtained, indirectly. 

Moreover, we believe that TRRR may have a wide application area in the literature, 
such as in physical and chemical process modelling and also in thermal sciences. For example, 
parabolic PDE like Black-Scholes equation with a terminal condition are known to be related 
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to the classical heat (diffusion) equation, which models the evolution of the concentration of 
heat or chemical substances starting with an initial condition. In fact, using a sequence of trans-
formations (change of variable), we can reduce the Black-Scholes PDE to the heat equation. 
Similarly, Izgi and Bakkaloglu [1] obtained transformations, which reduce Black-Derman-Toy 
PDE to the 3rd Lie canonical form using Lie symmetry analysis. Furthermore, such PDE are 
also related to the random diffusion processes through the well-known Feynman-Kac formula. 
For more details, one can refer to Mao [2]. Therefore, it might be interesting to explore the 
application of the RRR to the deterministic systems of diffusion equations with varying model 
parameters or initial conditions. 

On the other hand, studies of the literature show that finding the relation between 
stochastic variables or deterministic time series has an important role in financial applications. 
Here, we present some of them among others, for example, Baker and Wurgler [3] investigate 
the comovement and predictability of relationships between bonds and stocks returns and they 
also emphasize that it is difficult to understand the relationship between them which depends 
on the market’s situation. In addition, Geweke [4] considers the measures of linear dependence 
and feedback for multiple time series in three directions. He advocates that these concepts can 
be useful for describing an estimated relationship and properties between two time series or 
econometric models. Duran and Izgi [5], and Izgi [6] present a proxy for the time evolution of 
market impression, which displays and helps to understand the interrelation of stock price with 
stochastic volatility and interest rate, in the view of the impression matrix norms. Chen et al. [7]
comprehensively revisit comovement behavior of indexes and stock splits by considering the 
two well-known paper’s results. Bunn et al. [8], presented the effect of hedging and speculative 
activities onto the oil and gas prices using a large international dataset of real and nominal mac-
ro variables from emerging economies in 2017.

Furthermore, we present real data applications of RRR for Borsa Istanbul-30 (BIST-
30) and Intel Corporation (INTC) indexes with respect to the Central Bank of the Republic of 
Turkey (CBRT). In these applications, we use daily RRR for BIST-30 and INTC with respect to 
daily interest rates of CBRT which we obtain by using daily return rates of BIST-30 and INTC 
indexes and daily interest rates of CBRT between June 18, 2003 and June 17, 2013. In addition, 
we perform simulations for these real data sets using RRR via a stochastic model based on the 
Black Scholes model [9] and show that our proxy, who is supported by the graphics we obtain 
from simulations by Milstein method [10] with the real data, is considerably suitable for financial 
markets. We believe that it may help investors or practitioners to catch behaviors or paths of the 
indexes with respect to time from the simulation results.

Transitive relative return rate

In this section, we first give the definition of a RRR and show how to construct the 
TRRR on it. Then, we present some propositions and theorems about TRRR and prove them. 
Moreover, we provide and solve some examples by using the theoretical results on TRRR 
which illustrate the consistency of the theoretical framework.

Definition 1 RRR. The RRR of a security X  with respect to a security  Y is:

 , 0x y
xy y

y

r r
RRR r

r
−

= ≠  

where ,x yr r  represent return rates of securities X  and ,Y  respectively. On the other hand, RRR 
can be thought as a function which is defined from 2  except 0y =  line to the real numbers. 
(i. e.  : \{ \ {0}}RRR = × →  ).
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Proposition 2. The RRR is not a symmetric (i. e. xy yxRRR RRR≠ ). 
Proof. Since ( )/ and ( )/xy x y y yx y x xRRR r r r RRR r r r= − = − , we have:

 1 1 1

x y

xy y x x
xy

y xyx y y

x

r r
RRR r r r RRRr rRRR r r

r

−

= = − = − − = − − ⇒
−

 

 
1
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1

yx
xy xy

yx yx

RRR
RRR RRR

RRR RRR

−
 

⇒ = − = − −  +  
 (1)

Corollary 3. Except the trivial case (i. e. 0RRR =  which implies x yr r= ), RRR is sym-
metric ( yx xyRRR RRR= ) if and only if one of them is –2. 

Definition 4 TRRR. If we have three securities (X, Y, Z) and only know XYRRR  and 
YZRRR  then relative return rate of X  with respect to the Z , which can be computed with these 

values, is called TRRR and it is denoted by ( )XZ XZTRRR RRR≡ . 
Theorem 5 TRRR. Let XYRRR  be the RRR of a security X  with respect to a security Y  

and YZRRR  be the relative return rates of a security Y  with respect to a security Z . Then, we 
can compute RRR of X  with respect to the Z  indirectly by:

 XZ XY YZ XY YZTRRR RRR RRR RRR RRR= + +  (2)

Proof. Since XYRRR  and YZRRR  are given then we can use their definitions directly 
such that ( )/ and ( )/XY X Y Y YZ Y Z ZRRR r r r RRR r r r= − = − . Then, 

 

  
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Z Y Z
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Z Y Z
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  − −
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= − − +
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Example 6. Assume that we have four securities ( , , , )X Y Z T  and only know three RRR  
(i. e. , ,XY YZ ZTRRR RRR RRR ), we can find RRR of X  with respect to T  by using Theorem 5, 
directly. If we apply eq. (2) to the given RRR then we get:

 XT XZ ZT XZ ZTTRRR TRRR RRR TRRR RRR= + + =  

 ( )XY YZ XY YZ ZT XY YZRRR RRR RRR RRR RRR RRR RRR += + + +  

 XY YZ ZTRRR RRR RRR =+ + +  

 
XY YZ ZT XY YZ XY ZT

YZ ZT XY YZ ZT

RRR RRR RRR RRR RRR RRR RRR
RRR RRR RRR RRR RRR

= +
+

++
+ + +  (3)
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Proposition 7. If we have three securities (X, Y, Z) and only know XYRRR  and ZYRRR , 
which are not in an order, then RRR of X with respect to the Z can be obtained by using the 
following formula: 

 
1

XY ZY
XZ

ZY

RRR RRR
TRRR

RRR
−

=
+

 

Proof. The statement can be easily proved by using Proposition 2 and Theorem 5, directly.
Corollary 8. It is clear from Proposition 2 and Corollary 3 that TRRR  is not symmet-

ric (i. e. XZ ZXTRRR TRRR≠ ) in general except the following cases:

 
0,  if  

2,  if 2
XY ZY

XZ
XY ZY

RRR RRR
TRRR

RRR RRR
=

= − + = −
 

Generalization of TRRR for n ≥ 3 cases

In this section, we give the generalization of the TRRR  for 3n ≥  securities whenever 
1n −  ordered RRR are known for 3n ≥  securities. The 3n =  case is identical to the classic 

TRRR  case which was considered explicitly in section Transitive relative return rate. For the 
2n =  and 1n =  cases the TRRR  converts to the RRR  and return rate, respectively. On the 

other hand, we assume that none of the ,1 ijTRRR i j n≤ < <  are known for the 3n ≥  case 
throughout this section. Otherwise, the new case(s) would be special case of the generalized one.

Definition 9. Let A  be a finite non-empty subset of R. Then, ( )XΣ  is called an adding 
function of the element of A, and it is defined from A  to   as follows: 

 ( ) : ( . .  if  { , , } { , , } )X A i e A a b c A a b c a b cΣ ⇒ = →Σ = Σ = + +  

Definition 10. Let B  be a finite non-empty subset of R. Then, ( )XΠ  is called a prod-
uct function of the element of B , and it is defined from B  to   as follows:

 ( ) : ( . .  if  { , , } { , , } )X B i e B a b c B a b c abcΠ ⇒ = →Π = Π =  

Theorem 11 (Generalization of TRRR). If we have 3n ≥  securities and know 1n −  
ordered RRR 12 23 1( . .  { , ,..., })n ni e A RRR RRR RRR −=  then the TRRR of the first security with 
respect to the nth security can be obtained using the following formula: 

 
( )

1 , for 1,..., 1
k

n
k

TRRR k nΣ= = −  
Π∑  

where 

 
( )

f{ }set of combination o
i

i A= −Π Π  

Proof. We will use mathematical induction on n  to prove the statement:

– 
2 1 ( )

12 12
1

k

k
TRRR RRR

−

=

 = =
ΣΠ∑  is obvious.

– Assume that it holds for 1n −  i. e. 
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1 1
1

n k
n

k
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−
=
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Let us show that it satisfies for n , too. 
– We want to show that 

( )1
11 [ ]

kn
knTRRR −
== ΣΠ∑  holds. In this step, we use hat notation for 

1n nTRRR −  to overcome the possible confusions, which may arise from representations, 
throughout operations.
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, for 1, 2, 3,..., 1
k

k
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Example 12. Solve Example 6 by using Theorem 11.
Solution. We define a set A such that A = {RRRXY, RRRYZ, RRRZT} then TRRRXT can be 

determined with ( )4 1
1[ ]k

kXTTRRR −
== Π∑ Σ  by Theorem 11. In order to use this theorem directly first 

of all we need to obtain (1)Π , (2)Π , and (3)Π . On the other hand, let { ( )}n
iC  represents a set, which 

contains i-combination of a set for n  elements. Here, the set is A  and it has 3n =  elements, then: 

 3
1{ ( )} {{ },{ },{ }}XY YZ ZTC RRR RRR RRR=  

 3
2{ ( )} {{ , },{ , },{ , }}XY YZ XY ZT YZ ZTC RRR RRR RRR RRR RRR RRR=  

 3
3{ ( )} {{ , , }}XY YZ ZTC RRR RRR RRR=  

Now, we are in the position to apply product function: 

 
(1)3

1{ ( )} { , },XY YZ ZTRRR RRR RRRCΠ = = Π  

 
(2)3

2{ ( )} { }, ,XY YZ XY ZT YZ ZTRRR RRR RRR RRR RRR RRRCΠ = = Π  
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(3)3

3{ ( )} { }XY YZ ZTRRR RRR RRRCΠ = = Π  

Finally, we can apply adding function to the previous sets and obtain results:

 
3 ( ) (1) (2) (3)

1

k
XT

k
TRRR

=

 = ΣΠ = ΣΠ + ΣΠ + ΣΠ =  ∑  

 
 

 
XY YZ ZT XY YZ XY ZT

YZ ZT XY YZ ZT

RRR RRR RRR RRR RRR RRR RRR
RRR RRR RRR RRR RRR

= +
+ +

++ + +
 (4)

Note that, this result is consistent with the solution in eq. (3) which is obtained for 
Example 6. In short, the results are equal in other words eqs. (3) and (4) are identical. 

Real data applications using RRR

Since it is hard to handle stochastic cases in the financial markets, real data application 
of stochastic differential equations (SDE) have important role for risky players. For this pur-
pose, we present real data applications of RRR for BIST-30 and INTC indexes with respect to 
CBRT. In particular, we use daily RRR for BIST-30 and INTC with respect to daily interest 
rates of CBRT which are obtained using daily return rates of BIST-30 and INTC indexes and 
daily interest rates of CBRT between June 18, 2003 and June 17, 2013. We show that the metric 
of RRR is useful for the relevant large data set, which includes 7827  observations in the data 
set, with the stochastic model based on Black-Scholes model [9] using the numerical solution 
of SDE [11]. 

We consider the following SDE for asset price process while we perform simulations 
via Milstein method [10, 11] for BIST-30, INTC, and CBRT: 

 ( ) ( )( ) ( ) ( )d d dS t S t t S t W tµν ν σρ= + +  (5)

whose exact solution:

 2 21( ) (0)exp ( )
2

S t S t W tµν ν σ ρ σρ  = + − +    
 

In eq. (5), the drift term µν ν+  represents the expected return rate of ( )S t  where µ  
and ν  are constant. Moreover, W(t) is a standard 1-D Brownian motion, and the diffusion term 
σ  represents volatility parameter of the asset price process.

Before we start applications of the RRR for real data, if we substitute ( )yxRRR t  and 
interest rate ( )xr t  for µ  and ν , respectively, in the drift term of SDE in eq. (5), we have:

 ( ) ( )[ ( ) ( ) ( )] ( ) ( )d d dyx x xS t S t RRR t r t r t t S t W tσρ= + +  

where ρ  represents the correlation coefficient between the securities  and x y .
For the first real data application, ( )yxRRR t  is the daily RRR of BIST-30 with respect 

to daily interest rate of CBRT, whereas for the second data application, ( )yxRRR t  represents the 
daily RRR of INTC with respect to daily interest rate of CBRT, and ( )xr t  is the daily interest 
rate of CBRT. For example, we choose the ( )0 13,740.86S =  (BIST-30’s value on June 18, 
2003), 0.033ρ =  (correlation coefficient between daily return rates of BIST-30 and daily inter-
est rates of CBRT) and the volatility parameter of BIST-30 as 0.1σ =  for the first application. 
Similarly, we choose the (0) 21.75S =  (INTC value on June 18, 2003), 0.02ρ =  (correlation 
coefficient between daily return rates of INTC and daily interest rates of CBRT) and the vola-
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tility parameter of INTC as 0.1σ =  for the second application. We then perform 1000  simula-
tions and obtain the graphs, see figs. 1(b) and 2(b), which show the expected BIST-30 and INTC 
index values, using daily RRR between 2003  and 2013 for BIST-30 and INTC with respect to 
daily interest rates of CBRT.

The figs. 1(b) and 2(b), which we obtain from simulations for BIST-30 and INTC 
indexes, look similar with the real data’s graphs that are presented in the left panel of the 
figs. 1 and 2, respectively. Although there are still approximation errors, these figures sup-
port that RRR approximation is useful to catch the pattern of the real data by performing 
simulations.
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Figure 1. Real BIST-30 (a) and expected BIST-30 (b) values between 2003 and 2013

Figure 2. Real INTC (a) and expected INTC (b) values between 2003 and 2013
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Conclusions

Recently, the approaches to the stochastic world via suitable models and methods have 
attracted academic attention in the literature. Although working with stochastic models is gen-
erally harder than deterministic ones, practitioners prefer to use stochastic models while they 
are modelling a problem since the stochastic models may reflect the real world behaviors better 
than deterministic models especially for the financial markets. We see that defining transitive 
and RRR is important and that the TRRR and RRR approximation can be useful for economists, 
investors or practitioners when they want to analyze and give an expectation for any security.

Moreover, we present real data applications of daily RRR for BIST-30 and INTC 
indexes with respect to the daily interest rates of CBRT. We obtain important results and show 
that these approaches work by using the real data. While we compare the simulation results 
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with the real data, we were successful in presenting very similar paths, which we obtained from 
simulation results for the first and second real data applications. These results show that RRR 
approximation is consistent with the real data and shows promise to be useful in different areas.

We believe that TRRR may attract academic attention in the literature since it may be 
used for defining or explaining the behavior of different securities with respect to the one being 
considered indirectly which is one of the most interesting and important uses of this proxy. 
Furthermore, we think that RRR approximation may also help to present comovement and 
polarization of securities.
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