
Wang, K.-L., et al.: A Modification of the Reduced Differential Transform … 
THERMAL SCIENCE: Year 2018, Vol. 22, No. 4, pp. 1871-1875 1871 

A  MODIFICATION  OF  THE 
REDUCED  DIFFERENTIAL  TRANSFORM  METHOD 

FOR  FRACTIONAL  CALCULUS 

by 

Kang-Le WANG 
a and Kang-Jia WANG 

b,* 
a School of Mathematics and Information Science,  

Henan Polytechnic University, Jiaozuo, China 
b School of Physics and Electronic Information Engineering,  

Henan Polytechnic University, Jiaozuo, China 

Original scientific paper 
https://doi.org/10.2298/TSCI1804871W 

In this paper, the reduced differential transform method is modified and success-
fully used to solve the fractional heat transfer equations. The numerical examples 
show that the new method is efficient, simple, and accurate. 
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Introduction 

In the last few decades, fractional derivatives have found many applications in vari-
ous fields of physics and engineering, for example, electrical networks, chemical physics, 
control theory of dynamical systems, reaction diffusion, signal processing, and heat transform 
can be successfully modeled in linear and non-linear fractional differential equations [1-4]. 
Various definitions of fractional derivatives are available in open literature [5-9].  

Heat transfer is classified into various mechanisms, such as thermal conduction, 
thermal convection, thermal radiation, and transfer of energy by phase changes. Heat transfer 
equation is used to describe thermal problems between continuous systems, while its fraction-
al partner can deal with thermal problems in discontinuous medium. In this paper, we consid-
er the following fractional heat transfer equation: 

 D 2 0t xxu u uα − + =  (1) 
with the initial condition: 

( ,0) exu x =  

where 0 1α< ≤ . When a = 1, eq. (1) is the well-known heat transfer equation. The fractional 
model can be used to describe the transient property of the combination of convective and ra-
diative cooling of a lumped system.  

In recent years, many researchers have focused on the approximate analytical solu-
tions of the fractional differential equations and some methods have been developed such as 
Adomian decomposition method [10], homotopy perturbation method [11-14], variational it-
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eration method [15-18], homotopy analysis method [19], Taylor series method [20], 
Daftardar-Gejji-Jafari method [21], exp-function method [22, 23], and sub-equation method 
[24], etc. In this paper, we have modified the reduced differential transform method (RDTM) 
[25, 26] for obtaining the approximate analytical solutions of the fractional heat transfer equa-
tions.  

The modification of the RDTM 

In this section, the basic definition of the modified RDTM is introduced. 
Denote T the modification of the reduced differential transform of u(x, t) at t = t0 as 

[25, 26]: 
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where a is a parameter which describes the order of time-fractional derivative. 
The differential inverse transform of T at Uk(x) is represented: 
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From eqs. (2) and (3), the following results can be obtained: 

If  ( , ) ( , ) ( , ),w x t u x t v x t= ±     then    [ ( , )] ( ) ( )k kT w x t U x V x= ±  
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By using the modification of the reduced differential transform on the both sides of 

eq. (1) and the initial condition, we have the following form: 
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 0 ( ) exU x =  (5) 
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By iterative calculation on eqs. (4) and (5), we have: 
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So we have the following solution: 
0 2 3 4

0 1 2 3 4( , ) ( ) ( ) ( ) ( ) ( )u x t U x t U x t U x t U x t U x tα α α α= + + + + +  

 0 2 3 4e e e ee
( 1) (2 1) (3 1) (4 1)

x x x x
xt t t t tα α α α

α α α α
= − + − + −

Γ + Γ + Γ + Γ +
  (6) 

When a = 1, the exact solution of eq. (1) is given: 

 ( , ) ex tu x t −=  (7) 

Equation (6) tends to the exact solution when a = 1. 
In tab. 1, we compare the exact solution with the 10th order approximate solution for 

different values of a. By comparison, it is easy to find that the approximate solutions continu-
ously depend on the values of time-fractional derivative. The transient property of the combi-
nation of convective and radiative cooling of a lumped system is determined by the value of a.  

Table 1. Comparison between the exact solution and the 10th order approximate solution by  
modified RDTM for different values of a 

x t 
a 

uexa(a = 1) 
0.6 0.8 1 

0.2 0.3 0.7538699863 0.8255259277 0.9048374178 0.9048374180 

0.4 0.6 0.7483607341 0.7721212773 0.8187307534 0.8187307531 

0.5 0.7 0.7830989649 0.7890770719 0.8187307542 0.8187307531 

0.8 0.9 0.9605377311 0.9213737964 0.9048374342 0.9048374180 

0.3 0.5 0.7193903227 0.7590522835 0.8187307535 0.8187307531 

0.7 0.3 1.242921482 1.361062156 1.4918246970 1.4918246980 

0.8 0.6 1.116423025 1.151869590 1.2214027580 1.2214027580 

0.5 0.9 0.7115838531 0.6825704967 0.6703200583 0.6703200460 
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Conclusion 

In this paper, we have successfully modified the RDTM. We use the method to find 
the approximate analytical solutions of fractional heat transfer equation. Our results show that 
the modification of the reduced differential transform is more reliable, efficient and accurate. 
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