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In this paper, new approach to parameterized homotopy perturbation method is 
presented to solve non-oscillatory problems. In contrast to the classical version 
of the homotopy method, optimal value of α is identified and used to obtain ap-
proximate solutions. The new approach is powerful as it effectively handled non-
oscillatory problems and gives results with the smallest known errors. 
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Introduction 

Homotopy perturbation method is one of the most recent and powerful methods de-
veloped to tackle both linear and non-linear problems. A lot of analytical numerical methods 
have been used to solve linear and non-linear problems. These include parameterized ho-
motopy perturbation method (PHPM) [1], frequency-amplitude formulation method [2-4], en-
ergy balance method [5-7], variational iteration method [8, 9], homotopy perturbation method 
[10-13], and parameter expanding method [14-16]. In a recent paper [1], Duffing equation 
which is a well-known oscillatory problem [17], was used to elucidate on the effectiveness 
and the applicability of the PHPM.  

In the solution procedure of PHPM to oscillatory problems, the homotopy is con-
structed such that coswt is introduced on both sides of the equation to cancel out the presence 
of the zero term on the right hand side [1]. This helps to easily manipulate the transformed 
problem so that the exact angular frequency, wex, can be used to identify the optimal value of 
α. However, in this paper a new approach to PHPM is presented in order to solve non-os-
cillatory problems. 

Basic idea of the new approach 

To illustrate the basic idea of the new approach for solving non-oscillatory prob-
lems, we consider the following non-oscillatory equation of the form: 

( ) ( ) 0, du f t t Rϕ − = ∈ (1) 

with boundary conditions: 

(0) ,  (0)u A R u B R′= ∈ = ∈ (2) 
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where j is a general differential operator, A and B are the known boundary conditions, and 
f(t) – a known analytical function. 

The operator j can generally be divided into two parts, linear, L, and non-linear, N. 
Equation (1), can therefore, be re-written: 

 ( ) ( ) ( ) 0L u N u f t+ − =  (3) 

We construct the following homotopy: 

 [ ] [ ]0
1( , ) (1 ) ( ) ( ) ( ) ( ) 1 2pH u p p L u L u p u f t p

pα
α α ϕ α

 
= − − + − − = − 

 
 (4) 

or 

 [ ]0 0
1 1( , ) ( ) ( ) ( ) ( ) ( ) 1 2 , 0,pH u p L u L u p u p N u f t p p

pα
α α α

α
   = − + + − − = − ∈     

 (5) 

where p = 1/a is the embedding parameter, u0 – the initial approximate solution of eq. (1) 
which satisfies the boundary conditions eq. (2). 

Obviously:  

 0( ,0) ( ) ( ) 0H u L u L u= − =  (6) 

 1, ( ) ( ) 0H u u f tϕ
α

  = − = 
 

 (7) 

Now we use p as expanding parameter and assume the solution of eq. (4) or eq. (5) 
can be written in the form: 

 0 1u u pu= +  (8) 

Now setting p = 1/a, as in [1] the approximate solution of eq. (3) becomes: 

 0 11

1lim
p

u u u u
α

α→
= = +  (9) 

Applications/results 

Example 1 

We consider a governing equation of cooling problem with its initial conditions as in 
[18]:  

 ( ) 4 4d ( 0,   0,)
dc a s i
TV hA T T E A T T t T
t

ρ δ τ+ − + − = = =  (10) 

To solve eq. (10), using the idea of PHPM we adopt its simplified version as given 
in [18] in the form: 
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 4d 0, 0, 1
d
θ θ εθ τ θ
τ
+ + = = =  (11) 

we construct the following homotopy: 

 4d 1 11 2 , 0,
d pp p p

pα
θ α θ εθ α
τ α

    + + − = − ∈       
 (12) 

here [0,1/ ]p α∈ is the embedding parameter. At p = 0, eq. (12) becomes linear and at 1/p α=  
eq. (12) turns to the original problem. 

Using the parameter p, we expand the solution q(t) as follows: 

 0 1pθ θ θ= +  (13) 

Setting p = 1/a leads to the approximate solution of eq. (11): 

 0 11/

1lim
p α

θ θ θ θ
α→

= = +  (14) 

Substituting eq. (13) into eq. (12) and equating likes powers of p, we have: 

 0
0 0: 100, ,p τθ θ== =  (15) 

 1 4
1 0 0

1[ 2 ,: ,1 0 1] pp
pα

θ α θ εθ α τ θ
 

+ − = = 
 

+ − =  (16) 

Solving eqs. (15) and (16) we have: 

 0 1θ =  (17) 

 1
1 (1 )ppα

θ α τ α ε τ
 

= − − + 
 

 (18) 

Now putting eq. (17) and eq. (18) into eq. (14), we have: 

 11 1 (1 )  ppα
θ ε τ

α

  
= + − − +  

   
 (19) 

Putting pαp = 1, we can rewrite eq. (19) in the form: 

 11 (2 )pθ ε τ
α
 = + − +  

 (20) 

The exact solution of eq. (11) was given by [18]: 

 
3

3
1 1ln
3 (1 )

εθτ
ε θ

+
=

+
 (21) 

In order to identify the optimal alpha we use eq. (21): 
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3

3 3
1 1 e(2 ) 1    

(1 ) e

τ

τ
ε

α τ ε ε

−

−

 
 = + + −
  + −  

 (22) 

Table 1. Numerical results of eq. (11) for e = 1  

t a qex qp |qex – qp| 

0.1 0.72500542 0.837930003 0.837930003 3.37·10–10 

0.2 0.618892372 0.723157965 0.723157965 8.25·10–10 

0.3 0.561524396 0.634259957 0.634259957 6.03·10–10 

0.4 0.525084774 0.561781752 0.561781753 1.74·10–9 

0.5 0.499617646 0.500765292 0.500765293 1.23·10–9 

Example 2 

Consider the following third-order linear differential equation with three point boun-
dary conditions: 

 2( ) (  ) 0, 0 1x xu k u a x′′′ ′− + = ≤ ≤  (23) 

with conditions: 

 0(0) (1) ,  (0.5) 0 u u u′ ′= = =  (24) 

The exact solution of eq. (23) was given in [19]: 

 3 2 3
1( ) sinh sinh tanh cosh cosh    

2 2 2 2
a k a a k ku x kx x kx
k k k

     = − − − + −     
     

 (25) 

where k = 5 and a = 1. 
Using the PHPM, we construct the following homotopy: 

 [ ] 1 125 1 1 2 , 0,    pu p u p p
pα

α α
α

   ′′′ ′− + + = − ∈     
 (26) 

where [0,1/ ]p α∈ is the embedding parameter. Assume the solution of eq. (23) is: 

 0 1u u pu= +  (27) 

setting p = 1/a, we have: 

 0 11

1lim
p

u u u u
α

α→
= = +  (28) 

Putting eq. (27) into eq. (26) and equating the identical powers of p gives:  

 0
0 0 0 0(0): (  1 0,  0, ,0) (0)p u u u A u B′′′ ′ ′′+ = = = =  (29) 
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 1
1 0 2 2 2(0) (01:  25 2 ,   0, ) (0,  )0 0pp u u u u u

pα
α α α

 
′′′ ′ ′ ′′− − = − = = = 

 
 (30) 

Solving eqs. (29) and (30) we have: 

 
2 3

0  
2 6

Bx xu A= + −  (31) 

 
3 4 5

1
1 25 5

6 24 24p
x Bx xu

pα
α α

  
= − + −       

 (32) 

[20] gives: 

 0.012107085822126442A = −  

 0.19732286064025403B =  

Now putting eqs. (31) and (32) into eq. (28): 

 
2 3 3

4 55 1(5
6

) 1
2 6 24 p

Bx x xu A Bx x
pαα

 
= + − + − + − 

 
 (33) 

Taking pap = 1 we have: 

 
2 3 3

4 55 1(5 1
2 6 4 6

)
2p

Bx x xu A Bx x
α
 = + − + − + − 
 

 (34) 

The parameter a can be identified optimally in the form: 

 
2 3

4 5
3 3

1 6 51 (5 sinh sinh
2 6 24 2

)Bx x a kA Bx x kx
x kα

  = + − − + − − + − +   
 

 
2 3

1 tanh cosh cosh  
2 2 2

a a k kx kx
k k

   + − + −      
 (35) 

Table 2. Numerical results of eq. (23) 

u α uex up |uex – up| 

0.1 0.999040607 –0.011268507 –0.011268507 3.23·10–14 

0.2 0.992887944 –0.009222206508 –0.009222206507 5.40·10–13 

0.3 0.977829921 –0.00646686151 –0.006466868148 3.31·10–12 

0.4 0.951889256 –0.003320195353 –0.003320195353 3.30·10–14 

0.5 0.914855315 0 1.590325·10–11 1.59·10–11 

Conclusion 

Homotopy of PHPM has been successfully constructed to handle non-oscillatory 
problems. The new approach is powerful and effective. Solutions obtained are highly accurate 
and has the best and smallest known errors. 



Adamu, M. Y., et al.: New Approach to Parameterized Homotopy …    
1870 THERMAL SCIENCE: Year 2018, Vol. 22, No. 4, pp. 1865-1870 

References 
[1] Adamu, M. Y., Ogenyi, P., Parameterized Homotopy Perturbation Method, Nonlinear Science Letters A, 

8 (2017), 2, pp. 240-243 
[2] He, J. H., Comment on He’s Frequency Formulation for Nonlinear Oscillators, European Journal of 

Physics, 29 (2008), 4, pp. 19-22  
[3] He, J.-H., Improved Amplitude-Frequency Formulation for Nonlinear Oscillators, International Journal 

of. Nonlinear Science and Numerical Simulation, 9 (2008), 2, pp. 211-212 
[4] Davodi, A. G., et al., Appplication of Improved Amplitude-Frequency Formulation to Nonlinear Differ-

ential Equation of Motion Equations, Modern Physics Letters B, 23 (2009), 28, pp. 3427-3436  
[5] Younesian, D., et al., Frequency Analysis of Strongly Nonlinear Generalized Duffing Oscillators Using 

He’s Frequency-Amplitude Formulation and He’s Energy Balance Method, Computer and Mathematics 
with Applications, 59 (2010), 9, pp. 3222-32278 

[6] Mehdipour, I., et al., Application of the Energy Balance Method to Nonlinear Vibrating Equations, Cur-
rent Applied Physics, 10 (2010), 1, pp 104-112 

[7] Askari, H., et al., Analysis of Nonlinear Oscillators With Rational Restoring Force Via He’s Energy 
Balance Method and He’s Variational Approach, Nonlinear Science Letters A, (2010), 1, pp. 425-430 

[8] Herisanu, Nand Marinca, V., An Optimal Iteration Method for Strongly Nonlinear Oscillators. Nonlinear 
Science Letters A, (2010), 1, pp. 183-192 

[9] He, J.-H., New Interpretation of Homotopy Perturbation Method, International Journal of Modern Phys-
ics B, 20 (2006), 18, pp. 2561-2568 

[10] He, J.-H., Coupling Method of a Homotopy Technique and a Perturbation Technique for Non-Linear 
Problems, International Journal of Nonlinear Mechanics, 35 (2000), 1, pp. 37-43 

[11] He, J.-H., Application of Homotopy Perturbation Method to Nonlinear Wave Equations. Chaos, Soliton 
and Fractals, 26 (2005), 3, pp. 695-700 

[12] He, J.-H., et al., Variational Iteration Method Which Should Be Followed, Nonlinear Science Letters A, 
1 (2010), 1, pp. 1-30 

[13] Ganji, D. D., Application of He's Homotopy Perturbation Method to Nonlinear Equations Arising in 
Heat Transfer, Physics Letters A, 355 (2006), 4-5, pp. 337-341 

[14] He, J.-H., Asymptotic Methods for Strongly Nonlinear Equations, International Journal of Modern 
Physics B, 20 (2006), 10, pp. 1141-1199 

[15] Xu, L., He's Parameter-Expanding Methods for Strongly Nonlinear Oscillators, Journal of Computation-
al and Applied Mathematics, 3 (2007), 1, pp.148-154 

[16] Xu, L., Determination of Limit Cycle by He’s Parameter-Expanding Method for Strangly Nonlinear Os-
cillators, Journal of Sound and Vibration, 302 (2007), 1-2, pp. 178-184 

[17] Thompson, J. M. T., Stewart, H. B., Nonlinear Dynamics and Chaos, John Wily & Sons, New York, 
USA, 2002, p. 66 

[18] Aziz, A., Na, T. Y., Perturbation Methiod in Heat Transfer, Hemisphere Publishing Corporation, Wash-
ington, DC, 1984 

[19] Akram, G., Rehman, H. U., Numerical Solution of Eighth Order Boundary Value Problems in Reproduc-
ing Kernel Space, Numer, Algor., 62 (2013a), 3, pp. 527-540 

[20] Shahid, S., Muzammal, I., Using of Homotopy Perturbation Method for Solving Multi-point Boundary 
Value Problems, Journal of Applied Sciences, Engineering and Technology, 7 (2014), 4, pp. 778-785 
 
 

 

Paper submitted: December 23, 2016 © 2018 Society of Thermal Engineers of Serbia.  
Paper revised: March 20, 2017 Published by the Vinča Institute of Nuclear Sciences, Belgrade, Serbia. 
Paper accepted: March 28, 2017 This is an open access article distributed under the CC BY-NC-ND 4.0 terms and conditions.  

http://www.vin.bg.ac.rs/index.php/en/

