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In this paper, a Riesz space fractional reaction-diffusion equation with non-linear 
source term is considered on a finite domain. This equation is commonly used to 
describe anomalous diffusion in thermal science. To solve the diffusion equation, 
a new fractional lattice Boltzmann method is proposed. Firstly, a difference ap-
proximation for the global spatial correlation of Riesz fractional derivative is de-
rived by applying the numerical discretization technique, and a brief convergence 
analysis is presented. Then the global spatial correlation process is inserted into 
the evolution process of the standard lattice Boltzmann method. With combining 
Taylor expansion, Chapman-Enskog expansion and the multi-scales expansion, 
the governing evolution equation is recovered from the continuous Boltzmann 
equation. Three numerical examples are provided to confirm our theoretical 
analysis and illustrate the effectiveness of our method at last. 
Key words: lattice Boltzmann method, non-linear source term, Taylor expansion, 

Riesz space fractional reaction-diffusion equation, 
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Introduction 

In 1855, Fick first proposed the diffusion equation to describe transport phenomena 
of nutrients in living organism. The important equation he utilized is the famous Fick's first 
law, J = –kÑu where J is the flux of the fluid-flow, k – the diffusion coefficient, and u – the 
concentration. Diffusion under Fick's law is determined by the local gradient of concentration. 
In recent years more and more diffusion phenomena are found to be non-Fickian, which can 
be described by fractional operators. A generalized Fick's law was presented in [1]: 

( )1 2D Dx xJ k uµ µ
µ ω ω+ −= − +  (1) 

where Dx
µ+ and Dx

µ−  represent left and right fractional Riemann-Liouville (R-L) derivatives 
respectively. Applying continuity equation with a source or sink term f(x, t), we arrive at the 
following space-fractional reaction diffusion equation: 

( )1 2D D ( , )x x
u k u f x t
t

µ µ
µ ω ω+ −∂  = ∇ + + ∂

(2) 

For a fixed km which does not change with x, eq. (2) reduces to: 
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 ( )1 2D D ( , )x x
u k u f x t
t

α α
µ ω ω+ −∂

= + +
∂

 (3) 

where a = 1 + m. If specifying:  

1 2
1

π2cos
2

ω ω
α

= = −  

we will derive the Riesz fractional reaction-diffusion equation: 

 ( , )u uk f x t
t x

α

µ α
∂ ∂

= +
∂ ∂

 (4) 

and the Riesz fractional derivative is defined: 

 1
2

1 ( )d , 1 2π2cos (2 )
2

u x u
xx

α α
α

α ξ ξ ξ α
α α

+∞
−

−∞

∂ − ∂
= − < <

∂∂ Γ −
∫  (5) 

Equation (3) was first proposed by Chaves [1] to investigate the mechanism of su-
per-diffusion and was later generalized by Benson et al. [2, 3]. It is a powerful approach to 
description of transport dynamics in complex systems governed by anomalous diffusion. 
Many numerical approaches have been proposed for eq. (3). Tadjeran [4] proposed a shifted 
Grunwald formula for R-L space fractional derivative and obtained an unconditional stable 
second-order accurate numerical approximation by applying Crank-Nicholson technique in 
time and extrapolation in space. He and Li [5] suggested a transform to convert fractional dif-
ferential equations into PDE. Zhang et al. [6] considered eq. (4) with Galerkin finite element 
method in space and a backward difference technique in time, both the stability and conver-
gence were proven. Sousa [7] derived a second order numerical method for eq. (3) involving a 
convection term and studied its convergence. Xu et al. [8] proposed a discontinuous Galerkin 
method for eq. (4) and derived stability analysis and optimal convergence rate. 

On the other hand, as a kind of mesoscopic numerical simulation method, lattice 
Boltzmann method (LBM) is a mature and popular approach to deal with fluid mechanics in 
the areas of a mesoscopic calculation [9-12]. In recent twenty years, many scholars proposed 
LBM for a series of classical PDE, such as the reaction-diffusion equations [13], the convec-
tion-diffusion equation [14-16], Klein-Gordon equation [17], Sine-Cosine-Gordon equation 
[18], Burgers' equation [19], and Korteweg-de Vries equation [20], etc. However, to the best 
of our knowledge, there are few results about the applications of LBM in fractional equations. 
Recently, Zhang and Yan [21] proposed LBM for the time fractional-order sub-diffusion 
equation based on the definition of R-L fractional derivative. Zhou et al. [22] employed LBM 
for solving the space fractional-order advection-diffusion equation with a sink term f(x, t). 

As in classical diffusion equations, f is usually related to the concentration u which 
is our original motivation to study eq. (4). Based on the previous observations, in this paper, 
we consider the following Riesz space fractional reaction-diffusion equation (RSFRDE) with 
non-linear source term: 
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 ( , , ), 0 , 0u uk f u x t x L t T
t x

α

µ α
∂ ∂

= + < < < ≤
∂ ∂

 (6) 

subject to the initial condition as u(x, 0) = y(x), 0 < x < L and the boundary condition as  
u(0, t) = j0(t), u(L, t) = jL(t), 0 < x £ T where km > 0 represents the dispersion coefficient. 
Gorenflo and Mainaedi [23] defined the Riesz space fractional operator on a finite domain a £ 
x £ b: 

 1 D ( ) D ( ) , 1 2π2cos
2

a b
u f x f x

x

α
α α

α α
α + −

∂ −  = + < < 
∂

 (7) 

where 
2 2

2 1 2 1
1 d ( )d 1 d ( )dD ( ) and D ( ) and ( )

(2 ) (2 )d ( ) d ( )

x b

a b
a x

f ff x f x
x x x x

α α
α α

ξ ξ ξ ξ
α αξ ξ+ −− −= = Γ ⋅

Γ − Γ −− −∫ ∫  

represents the Euler gamma function. Based on finite difference method and standard LBM, 
we develope a new space fractional lattice Boltzmann method (FLBM) for the simulation of 
fractional PDE.  

Numerical discretization techniques of  
Riesz space-fractional derivatives 

In order to make the standard LBM suitable for RSFRDE, eq. (6), in this section, we 
first deal with the numerical discretization techniques of the Riesz space-fractional derivative, 
and then present the error. 

Finite difference approximation 

We now sketch a redistribution scheme and a related discrete random walk model 
for eq. (6). The case of standard diffusion process, i. e. a = 2 is included, which actually leads 
to a discrete model of the classical Brownian motion. 

For our purpose we discretize space and time by grid points and time instants. For 
convenience sake, we denote the weight coefficient functions by: 

 2 2( , ) ( 1)j j jα αω α − −= + −  (8) 

where a is the order of fractional derivatives, and j is the distance between x and grid points. 
The functions w(j, a) are weight factors of the equilibrium distribution functions, and they are 
derived theoretically and non-negative. 

Assume that the spatial domain is [a, b], then let a = x0 < x1 < … < xL–1 < xL = b de-
note the nodal points with equispace h = (b – a)/L. For notation convenience, we denote: 

 ,1 2 1 21 1
( , )d ( , )d( , ) : , ( , ) : ( , ) : ( , ) ( , )

( ) ( )

x b

a x

u t u tx t x t x t x t x t
x xα α
ξ ξ ξ ξ
ξ ξ− −Ψ = Ψ = Ψ = Ψ + Ψ

− −∫ ∫  (9) 

The function Y1(x, t) at point x = xl can be approximated by: 
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[ ]{ }

( 1)1

1 1 1 1
00

( 1)1 1

1
0 0

( , )d ( , )d ( , )d( , )
( )

1 d( , ) ( 1) ,
2

j hx x a l

ja jh

j hl l

j j jh

u t u x t u x tx t
x

u x jh t u x j h t

α α α

α

ξ ξ ξ ξ ξ ξ
ξ ξ ξ

ξ
ξ

+− −

− − −
=

+− −

−
= =

− −
Ψ = = = ≈

−

≈ − + − + =

∑∫ ∫ ∫

∑ ∑ ∫
 

 [ ]{ }
2 1

0
( , ) ( , ) ( 1) ,

4 2

l

j

h j u x jh t u x j h t
α

ω α
α

− −

=
= − + − +

− ∑  (10) 

Similarly, the function Y2(x, t) can be approximated by: 

 [ ]{ }
2 1

2
0

( , ) ( , ) ( , ) ( 1) ,
4 2

L l

k

hx t k u x kh t u x k h t
α

ω α
α

− − −

=
Ψ = + + + +

− ∑  (11) 

The preceding two approximations lead to: 

1 2
2 1

0

( , ) ( , ) ( , )

( , ){ ( , ) [ ( 1) , ]}
4 2

l

j

x t x t x t

h j u x jh t u x j h t
α

ω α
α

− −

=

Ψ = Ψ + Ψ =


= − + − + +− 

∑
 

 
1

0
( , ){ ( , ) [ ( 1) , ]}

L l

k
k u x kh t u x k h tω α

− −

=


+ + + + + 


∑  (12) 

The following result is obtained by inserting eq. (12) into eq. (6). Thus, eq. (6) can 
be approximated with: 

 
2

2
( , ) ( , , )u u x t f u x t

t x
λ∂ ∂

= +
∂ ∂

  (13) 

where ( ),u x t  and l are the following expressions, respectively: 

 [ ]
1

0
( , ) ( , ) ( , ) ( 1) ,

l

j
u x t w j u x jh t u x j h tα

−

=

  = − + − + + 
  
∑  

 [ ]
1

0
( , ) ( , ) ( 1) ,

L l

k
w k u x kh t u x k h tα

− −

=

  + + + + + 
  
∑   (14) 

 
2

π4 (3 )cos
2

uk h α
λ

αα

−

= −
Γ −

 (15) 

Analysis of error 

Next we present a brief analysis of the error from eq. (6) to eq. (13). 

Theorem 1. Let 1 < a £ 2 If f ¢(x) Î C1[a, b], then:  
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1

11 3

1

( ) ( )
( ) ( ) d

2

j

j

xn
j j

n f
j x

f x f x
x x f x x C hα α

−

−− −

=

+ 
− − ≤  ∑ ∫  (16) 

where Cf  is a constant only dependent on the function f. 

Proof. Denote:  

1

11

1

( ) ( )
( ) ( ) d

2

j

j

xn
j j

n
j x

f x f x
A x x f x xα

−

−−

=

+ 
= − −  ∑ ∫  

The functions f(xj) and f(xj–1) are expanded using Taylor series at x: 

 2( ) ( ) ( )( ) ( )j jf x f x f x x x O h′= + − +  (17) 
and 
 2

1( 1) ( ) ( )( ) ( )j jf x f x f x x x O h−′− = + − +  (18) 

then 
1

1 2 1 2
1

1 1
( ) d ( ) ( ) ( 2 )d ( )

j j

j i j

x xn n

n f n j j
j jx x

A x x x O h C x x x x x x O hα α

− −

− −
−

= =
= − + ≤ − + − +∑ ∑∫ ∫  (19) 

From Lin and Xu [24] we know: 

 
1

1

3
1( ) ( 2 )d

j

j

x

n j j
x

x x x x x x Ch
α α−

−

−
−− + − ≤∫  (20) 

hence  

 11 2 3

1

( )( 2 )
( ) d ( )

2

j

j i

xn
j j

n f
j x

f x x x x
A x x x O h C hα α

−

−− −

=

′ + −
= − + ≤∑ ∫  (21) 

The LBM for the RSFRDE 

The establishment of the FLBM 

It is generally known that the collision and streaming processes of the standard LBM 
are usually expressed by the following equations: 

 * eq1: ( , ) ( , ) ( , ) ( , )i i i iCollision f x t f x t f x t f x t
τ
 = − −   (22) 

and 

 Streaming: *( , ) ( , )i i if x tc t t f x t+ ∆ + ∆ =  (23) 

from which we can derive: 

 eq1( , ) ( , ) ( , ) ( , )i i i i if x tc t t f x t f x t f x t
τ
 + ∆ + ∆ = − −   (24) 
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Collision and streaming processes are only related to their local equilibrium values 
in standard LBM, but the RSFRDE has global spatial correlation. So, based on the standard 
LBM, FLBM model can be put in the following steps by adding process of the global spatial 
correlation. 

– Step 1. The evolution process: 

 
2

eq ( , )1( , ) ( , ) ( , ) ( , ) ( , )
2

i
i i i i i i

x ttf x tc t t f x t f x t f x t t x t
t

θ
θ

τ
∂∆ + ∆ + ∆ = − − + ∆ +  ∂

 (25) 

where 
2 ( , )( , )

2
i

i
x ttt x t
t

θ
θ

∂∆
∆ +

∂
 is given to recover the non-linear source term. 

– Step 2. The macroscopic quantity: 

 ( , ) ( , )i
i

x t t f x t tρ + ∆ = + ∆∑  (26) 

– Step 3. The global spatial correlation process: 

 ( , ) ( , ) ( , ) ( , ) ( , )
j k

u x t j x jh t k x kh tω α ρ ω α ρ= + + −∑ ∑
 (27) 

where w is defined by eq. (8). 

Recovery of the RSFRDE 

In order to recover the macroscopic equation, we employ Chapman-Enskog expan-
sion [25] to fj(x, t) under the assumption of small Knudsen number, ε, then discuss the chang-
es in different time scales. Denote t0, t1 as the time scales, then we have: 

 (0) (1) 2 (2) 3( )i i i if f f f Oε ε ε= + + + ,    2

0 1
( )O

t t t
ε ε∂ ∂ ∂

= + +
∂ ∂ ∂

 (28) 

For fractional-order diffusion problem, by the law of conservation, it is appropriate 
to assume that equilibrium distribution functions are constants, where no macroscopic veloci-
ty is involved. Equilibrium distribution function satisfies the constraint of mass and momen-
tum: 

 eq (0) ,i i
i i

f f u= =∑ ∑    eq 0i i
i

c f =∑  (29) 

combining eqs. (28), we obtain: 

 (1) (2) 0i i
i i

f f= =∑ ∑  (30) 

Using Taylor expansion on eq. (25) at point (x, t), with setting ε = Dt, we have: 

 ( )
2 3

2 2 eq 21 1( )
2 2

i
i i i i i i ic f c f O f f

x t x t t
θεε ε ε ε θ

τ
∂∂ ∂ ∂ ∂   + + + + = − + +   ∂ ∂ ∂ ∂ ∂   

 (31) 
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Substituting eqs. (28) into eq. (33), we get: 

( )

( )

eq (1) 2 (2)

0 1
2

2 eq (1) 2 (2)

0 1

1
2

i i i i

i i i i

c f f f
x t t

c f f f
x t t

ε ε ε ε

ε ε ε ε

 ∂ ∂ ∂
+ + + + + ∂ ∂ ∂ 

 ∂ ∂ ∂
+ + + + + = ∂ ∂ ∂ 

 

 ( )
3

(1) 2 (2) 21
2

i
i i if f

t
θεε ε ε θ

τ
∂

= − + + +
∂

 (32) 

Equating term from both sides of the previous equation of same order of ε. 

– Terms order of ε:  

 eq (1)

0

1
i i ic f f

x t τ
 ∂ ∂

+ = − ∂ ∂ 
 (33) 

– Terms order of ε2:  

 
2eq

(1) eq (2)

1 0 0

1 1
2 2

i i
i i i i i i

f c f c f f
t x t x t t

θεθ
τ

   ∂ ∂∂ ∂ ∂ ∂
+ + + + = − + +   ∂ ∂ ∂ ∂ ∂ ∂   

 (34) 

Substituting fi
(1) in eq. (33) into eq. (34), yields: 

 
eq

eq (2)

1 0 0

1 1
2 2

i i
i i i i i

f c c f f
t x t x t t

θετ θ
τ

    ∂ ∂∂ ∂ ∂ ∂ + + − + = − + +     ∂ ∂ ∂ ∂ ∂ ∂      
 (35) 

To recover continuum eq. (6), summing up i in eqs. (33) and (34) over all states, re-
spectively, namely, from i = 1 to i = 3 we arrive at: 

 eq eq (1)

0

1
i i i i

i i i
c f f f

x t τ
   ∂ ∂

+ = −   
∂ ∂   
∑ ∑ ∑  (36) 

and  

0

2 2
eq 2 eq eq eq

2 2
1 0

1 2
2i i i i i i

ti i i i
f c f c f f

t xx t
τ

 ∂ ∂ ∂ ∂ + − + + =   ∂ ∂ ∂∂ ∂  
∑ ∑ ∑ ∑  

 (2)1
2

ii
i i

i i
f

t
θεθ

τ

∂
= − + +

∂
∑∑ ∑  (37) 

Operating (37) × ε + (36), we have: 

( )
2

eq eq eq
2

0 1

1
2i i i i i i

i i i
c f f c c f

x t t x
ε τ ε

     ∂ ∂ ∂ ∂    + + + − +        ∂ ∂ ∂ ∂          
∑ ∑ ∑  
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 eq

0

1
2 2

ii
i i i

i i
c f

x t t
θεε τ εθ

  ∂  ∂ ∂  + − = +    ∂ ∂ ∂       

∑∑ ∑  (38) 

Back to the original time scale: 

( )
2

eq eq eq
2

1
2i i i i i i

i i i
c f f c c f

x t x
ε τ

   ∂ ∂ ∂   + + − +     ∂ ∂ ∂      
∑ ∑ ∑  

 eq

0

1
2 2

ii
i i i

i i
c f

x t t
θεε τ εθ

  ∂  ∂ ∂  + − = +    ∂ ∂ ∂       

∑∑ ∑   (39) 

In order to obtain eq. (13), meanwhile considering the fractional-order diffusion 
problem which does not involve macroscopic velocity, since equilibrium distribution function 
satisfies the conservation law of mass and momentum, we assume that the equilibrium distri-
bution function fi

eq(x, t) satisfies the following conditions: 

 eq eq eq, 0, , ( , , )
2

ii
i i i i i i i i

i i i i i
f f u c f c c f Ru f u x t

t
θεεθ

∂
= = = = + =

∂
∑∑ ∑ ∑ ∑ ∑  (40) 

So eq. (40) can be put in the following form: 

 
2

2
( , ) 1 ( , , )

2
u x t Ru f u x t

t x
ε τ∂ ∂ + − = ∂ ∂ 



 (41) 

Comparing eq. (15) with eq. (13), we can get the relationship between land t: 

 1
2

Rλ ε τ = − 
 

 (42) 

Appealing to eqs. (15) and (42), we have: 

 
21

π2 4 (3 )cos
2

k h

R

α
µτ

αε α

−

= −
Γ −

 (43) 

The equilibrium distribution function fi
eq(x, t) can be obtained from eqs. (40): 

 eq eq eq
1,2,31 2 32 2

( , , ), ,
32

Ru Ru f u x tf u f f
c c

θ
ε

= − = = =
 

 (44) 

Numerical examples 

In this section, the backward scheme is used for computing /i tθ∂ ∂  in eq. (25), and 
all the computations are computed by MATLAB 2013a software. Example 1, we present the 
approximate results of FLBM for fractional diffusion equation with an analytical solution. By 
comparing the numerical solution and analytical solution, the accuracy and reliability of the 
model are verified. In Examples 2 and 3, the FLBM is applied to solve RSFRDE with differ-
ent non-linear source terms to illustrate the model application scope. Moreover, our numerical 
solutions of simulation consist with the reported results, which also illustrates the feasibility 
of our method. 
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The global relative error (GRE) and the maximum absolute error (MAE) are given 
for testing error precision of the model: 

 ( )
*

*

( , ) ( , )
GRE

( , )
i ii

ii

u x t u x t
t

u x t

−
=
∑

∑
 (45) 

 *MAE( ) max ( , ) ( , )i i it u x t u x t= −  (46) 

where u(xi, t) and u*(xi, t) are numerical and analytical solutions at (xi, t), respectively. 
 
Example 1. Consider the following space Riesz fractional diffusion equation:  

 ( , ) ( , ) ( , ), (0,1)u x t u x t f x t x
t x

α

α
∂ ∂

= + ∈
∂ ∂

 

with the source term: 
1 2 2

2 2 2 2 2

1( , ) (1 ) ( 1)
(5 )

1 π( 1) 12 6 ( 1) (1 ) 12( 1) (6 7) sec
1 2

f x t t x x

t x x x t x x x
x

α

α
α α

α
α

αα α α α α

−

−

= + − + ⋅
Γ −
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and the initial data u(x, 0) = x2(1 – x)2, the boundary condition u(0, t) = u(1, t) = 0. It has the 
analytical solution u(x, 0) = (t + 1)ax2(1 – x)2. 

In tab. 1, we obtained the GRE between the exact solution and the numerical solu-
tion for different a at t = 0.01, 0.1, 0.5, 1 with the mesh size h = 0.01. Table 2 also lists the 
MAE with a = 1.1, 1.3,…, 1.99 at t = 0.01, 0.1, 0.5, 1. From fig. 1(a) and 1(b), we can see 
that the numerical solution and analytical solution is consistent. Besides, from fig. 1(c) we can 
find that the FLBM is first-order accurate, this is because the order of convergence for the 
global spatial correlation process is 3 – a, and the boundary conditions is first-order accurate. 

Example 2 Considering the RSFRDE with non-linear source term:  

( , ) ( , ) sin ,u x t u x t u
t x

α

αλ∂ ∂
= +

∂ ∂
   0 < x < p 

with the boundary condition u(0, t) = u(p, t) = 0, 0 £ t £ T, and initial condition u(x, 0) = sinx. In 
order to demonstrate the efficiency of our model, the results of the FLBM are compared with 
the ones of [26] in which fractional method of lines (FMOL) is used. The FMOL, as a classical 
method for solving fractional differential equations, was first introduced by Liu et al. [27]. 

From fig. 2, it can be seen that the characters of reaction-diffusion system response 
with non-linear source term at the different time t with a = 1.8, N = 20, l = 0.1. Table 3 lists 
the numerical results of our FLBM with a = 1.8, l = 0.1, and t = 1. The last column of tab. 3 
is the numerical results of FMOL with a = 1.8, l = 0.1, t = 1, and h = p/200 in [26]. From 
tab. 3, the numerical results of the two methods are very close. 



Dai, H.-P., et al.: Lattice Boltzmann Model for the Riesz Space Fractional … 
1840 THERMAL SCIENCE: Year 2018, Vol. 22, No. 4, pp. 1831-1843 

Table 1. Global relative errors 

t a = 1.1 a = 1.3 a = 1.5 a = 1.8 a = 1.9 a = 1.99 

0.01 0.0029 0.0018 0.0015 0.0005 0.0005 0.00021 

0.1 0.0132 0.0060 0.0037 0.0021 0.0020 0.00019 

0.5 0.0176 0.0069 0.0039 0.0035 0.0028 0.00015 

1 0.0182 0.0070 0.0039 0.0036 0.0029 0.00016 

Table 2. Maximum absolute errors 

t a = 1.1 a = 1.3 a = 1.5 a = 1.8 a = 1.9 a = 1.99 

0.01 3.5418e-04 2.4083e-04 1.8400e-04 7.7488e-05 5.6021e-05 1.5563e-05 

0.1 1.2000e-03 5.4134e-04 3.2183e-04 1.0961e-04 1.5722e-04 1.2563e-05 

0.5 2.1030e-03 9.0018e-04 5.3067e-04 2.9491e-04 4.0555e-04 2.1748e-05 

1 3.0130e-03 1.3012e-03 8.2268e-04 5.2616e-04 7.2377e-04 3.8906e-05 

 

  

 

Figure 1. Numerical results for Example 1  
with different α 

Example 3. Consider the following fractional order Fisher's equation [28], which is 
applied to model the growth and spread of species:  
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( , ) ( , ) 1 ,

1 2, 0 , 0

u x t u x t uu
t kx

x l t T

α

αλ µ

α

∂ ∂  = + − ∂  ∂

< ≤ < < ≤ ≤

 

with boundary condition u(0, t) = u(s, t) = 0 
and initial condition u(x, 0) = v(x). The m is in-
trinsic growth rate, k – the carrying capacity, 
and v(x) – a step-like initial function which 
takes the constant value v(50) = 0 around the 
origin and rapidly decays to 0 away from the 
origin. 

We take l = 0.1, k = 1, l = 100, and 
choose the following equation as the initial 
function: 

( ) 0.8exp( | 50 |), 0 100v x x x= − − ≤ ≤  

Table 3. Numerical results of FLBM and FMOL for different N with a = 1.8, l = 0.1, and t = 1 

X 
FLBM FMOL in [27] 

h = p/20 h = p/100 h = p/200 h = p/200 

0.0000 0.00000 0.00000 0.00000 0.00000 

0.3142 0.72989 0.72743 0.71297 0.71312 

0.6283 1.25645 1.2541 1.24791 1.24780 

0.9425 1.59814 1.59763 1.59367 1.59121 

1.2566 1.78435 1.78402 1.78048 1.77773 

1.5708 1.84300 1.84272 1.83558 1.83648 

1.8850 1.78434 1.78402 1.78048 1.77783 

2.1991 1.59814 1.59763 1.59367 1.59176 

2.5133 1.25645 1.25541 1.25091 1.25101 

2.8274 0.69853 0.72743 0.72707 0.72768 

3.1416 0.00000 0.00000 0.00000 0.00000 

 
Figure 3(a) shows the characteristics of the fractional order Fisher's equation at dif-

ferent time, T, with a = 1.8, m = 0.1, and fig. 3(b) shows the features of the diffusion system 
response with different growth rate of invasive state m at t = 32 with a = 1.8. Figure 3(c) 
shows heaver tails and faster spreading with the fractional order a decreases. It is found that 
our simulation results of the fractional Fisher's equation well agree with the results of [28] ex-
cellently. 

Conclusions  

In this paper, a new FLBM for the RSFRDE with non-linear source term is pro-
posed. Firstly, a numerical approximation for the global spatial correlation of Riesz fractional 
derivative is presented by using numerical discretization technique. Meanwhile, the local error  

 
Figure 2. The state of the non-linear diffusion 
system with a = 1.8, N = 20, l = 0.1 at the 
different t in Example 2 
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Figure 3. Numerical results for Example 3 with 
different t, μ, and α 

of the global spatial correlation process is estimated and proved. The FLBM is described and 
demonstrated by inserting global spatial correlation process into the evolution process of the 
standard LBM. Secondly, in order to recover the non-linear source term with the second order 
truncation error, we rewrite the evolution equation of FLBM by adding first-order and se-
cond-order terms. Finally, some numerical results of FLBM are presented. These numerical 
results are given to demonstrate that our FLBM is a computationally efficient method for 
RSFRDE with non-linear source term. Comparing with other previous methods, the proposed 
method is rather easy to practice. 
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