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A fixed-space-step method and a fixed-time-step method are presented, respec-
tively, for solving the Stefan problems with time-dependent boundary conditions. 
The evolution of the moving interface and the temperature distribution in the 
phase change domain are simulated numerically by using two methods for melt-
ing in the half-plane and outward spherical solidification. Numerical experiment 
results show that the numerical results obtained from the two methods are in 
good agreement for the different test examples, and the two methods can be ap-
plied to solve Stefan problems in engineering practice. 
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Introduction 

The Stefan problem or the moving boundary problem can be defined as a parabolic 
partial differential equation with associated initial and boundary conditions which has to be 
solved in a time-dependent space domain with the moving interface [1-3]. Owing to the un-
known position of the moving interface and the non-linear form of the thermal energy balance 
equation at the interface, the Stefan problem is usually solved by numerical methods or ap-
proximate analytical methods [4-6]. Caldwell and Kwan [7] presented a brief review of five 
key numerical methods for 1-D Stefan problems for simple geometries including plane, cylin-
drical and spherical, and obtained the numerical results of spherical and cylindrical phase 
change problem with fixed boundary condition from four methods including the enthalpy 
method, boundary immobilization method, perturbation method and heat balance integral 
method. Qu et al. [8] established a finite difference method to solve the Stefan problem with 
periodic boundary condition and analyzed the effects of the oscillating surface temperature on 
the motion of the moving interface and the temperature distribution. 

In the present paper, the fixed-space-step method and the fixed-time-step method are 
presented for solving the Stefan problems with time-dependent boundary conditions. The evo-
lution of the moving interface and the temperature field in the phase change domain are simu-
lated numerically for melting in the half-plane and outward spherical solidification. The nu-
merical results are compared with those obtained by other numerical methods. 
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Melting in a semi-infinite domain 

Consider 1-D single-phase melting of ice in a semi-infinite domain due to the time- 
-dependent boundary temperature. The dimensionless formulation of this problem [9] is:  
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subject to the initial and boundary conditions: 

 ( , ) 0T x t = ,    ( ), 0x R t t= >  (3) 

 ( , ) ( )T x t f t= ,    0, 0x t= >  (4) 

 ( ) 0R t = ,    0t =  (5) 

where Ste is the Stefan number given by ref( ) ,C T h∆  where C  is the specific heat capacity, 
h  – the latent heat, and refT∆  – the reference temperature. 

Fixed-space-step method 

We establish a finite difference scheme to solve the system (1)-(5) by considering 
the needed time corresponding to the forward-moving constant distance of the moving inter-
face each time [8]. Let Dx be the forward-moving distance of the phase change interface each 
time, namely the constant space step size. Thus Rj = jDx is the position of the moving inter-
face at t = tj, with t0 = 0 and j = 0, 1, 2,… Using a backward difference scheme for the time 
derivative and a central difference scheme for the space derivative, eqs. (1) and (2) in discrete 
form can be expressed as: 
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where DtN–1 = tN – tN–1, a = 1/Dx, and b = Dx/DtN–1. 
The initial and boundary conditions (3)-(5) in discrete form are, respectively: 

 0N
NT =  (8) 

 0 ( )N
NT f t=  (9) 

 0 0( ) 0R t R= =  (10) 

Fixed-time-step method 

We establish a finite difference scheme to solve the system (1)-(5) by computing the 
forward-moving distance of the moving interface corresponding to the constant time step each 
time. Let t∆  be the constant time step, and Rj is the position of the moving interface at  
t = jDt, with t0 = 0 and j = 0, 1, 2, … Using a backward difference scheme for the time deriva-
tive and a non-equidistant Lagrange three-point interpolation formula for the space derivative, 
eqs. (1) and (2) in discrete form can be expressed as: 
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where Dxj–1 = Rj – Rj–1, j = 1, 2, …, N. Introducing two variables cj = Dxj–1Dxj and  
dj = Dxj–1 + Dxj, the two equations above can then be transformed into the following form: 
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The initial and boundary conditions (3)-(5) in discrete form are, respectively: 

 0N
NT =  (13) 

 0 ( ) ( )N
NT f t f N t= = ∆  (14) 

 0 0( ) 0R t R= =  (15) 

Numerical results and discussion 

In order to initialize our numerical procedures and to circumvent the singularity at  
t = 0, the exact temperature distribution and the corresponding position of the moving inter-
face given by the exact solution are used at t1 and t2 after t0 = 0 for all numerical calculations 
[9]. We consider one-dimensional melting problem in a semi-infinite domain due to the 
boundary temperature T(0, t) = f(t) = 1 + t, we simulate numerically the evolution of the mov-
ing boundary and the temperature distribution in the phase change process by using two 
methods and compare the computational accuracy of the numerical results. 

Table 1 shows the position of the moving boundary at five different times for three 
different values of the Stefan number. Here, the constant space step size Dx = 0.001 is used for 
the fixed-space-step method and the constant time step size Dt = 0.001 is used for the fixed-
time-step method. In the case of Ste = 0.2, the position of the moving boundary obtained from 
these two methods are respectively R(t) = 2.2937 and R(t) = 2.2938 at t = 5.000, which absolute 
error is only about 0.0001. But in the case of Ste 5.0= , the position of the moving boundary 
obtained from these two methods are, respectively, and R(t) = 5.7840 and R(t) = 5.7835 at  
t = 5.000, which absolute error is about 0.0005. Thus the position of the moving boundary ob-
tained from these two methods is very close and the absolute error is less than 0.0015, as can be 
seen from tab. 1. Figure 1(a) shows the evolution of the moving interface as a function of time 
for three different values of the Stefan number, and fig. 1(b) shows the temperature distribution 
in the phase change domain for Ste = 1.0 when the moving interface moves to R(t) = 1.0, 3.0, 
and 5.0, respectively. It can be seen from fig. 1 that the results obtained from the two methods 
agree very well. The evolution of the moving interface depends very strongly upon the Stefan 
number. For the larger Stefan number, the velocity of the moving interface is larger. On the oth-
er hand, in the case of the boundary condition T(x = 0, t) = f(t) = 1 + t, the temperature in the 
whole phase change domain is changing clearly as the domain grows. 
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Table 1. Comparison of the position of the moving interface using two numerical methods for melting 
in the half-plane 

Ste t Fixed-space-step Fixed-time-step Error 

0.2 1.000 0.7303 0.7303 0.0000 

0.2 2.000 1.1646 1.1646 0.0000 

0.2  3.000 1.5604 1.5605 0.0001 

0.2 4.000 1.9348 1.9349 0.0001 

0.2  5.000 2.2937 2.2938 0.0001 

1.0 1.000 1.4033 1.4027 0.0006 

1.0 2.000 2.1559 2.1556 0.0003 

1.0 3.000 2.8071 2.8069 0.0002 

1.0 4.000 3.4011 3.4009 0.0002 

1.0 5.000 3.9552 3.9551 0.0001 

5.0 1.000 2.2624 2.2609 0.0015 

5.0 2.000 3.3511 3.3502 0.0009 

5.0 3.000 4.2520 4.2514 0.0006 

5.0 4.000 5.0518 5.0513 0.0005 

5.0 5.000 5.7840 5.7835 0.0005 

 
Figure 1. Evolution of the moving interface and temperature distributions in the phase change 
domain for two numerical methods for melting in the half-plane; (a) evolution of the moving 
interface, (b) temperature distributions for Ste = 1.0 

Outward spherical solidification 

Consider the outward spherical solidification of a saturated liquid due to the time- 
-dependent boundary temperature. The governing equation of this problem [7] is:  
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subject to the initial and boundary conditions: 
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 ( , ) ( )T r t f t= ,    1, 0r t= >  (18) 

 ( , ) 1T r t = ,    ( ), 0r R t t= >  (19) 

 ( ) 1R t = ,    0t =  (20) 

Fixed-space-step method 

Let Dr be the constant space step, and Rj = 1 + jDr is the position of the moving in-
terface at t = tj, with t0 = 0 and j = 0, 1, 2, … Using a backward difference scheme for the 
time derivative and a central difference scheme for the space derivative, eq. (16) in discrete 
form can be expressed as: 
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where DtN–1 = tN – tN–1, N = 1, 2, … The Stefan condition (17) at rN = 1 + NDr in discrete 
form is: 
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Introducing two variables a = 1/Dr and b = Dr/DtN–1, eqs. (21) and (22) can be trans-
formed into the following form: 
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The initial and boundary conditions (18)-(20) in discrete form are, respectively: 

 0 ( )N
NT f t=  (25) 

 1N
NT =  (26) 

 0 0( ) 1R R t= =  (27) 
The set of eqs. (23)-(27) are the finite difference scheme of the set of partial differ-

ential eqs. (16)-(20) for the spherical solidification. 

Fixed-time-step method 

Let Dt be the constant time step, and Rj is the position of the moving interface at  
tj = jDt, with t0 = 0 and j = 0, 1, 2, … Using a backward difference scheme for the time deriv-
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ative and a non-equidistant Lagrange three-point interpolation formula for the space deriva-
tive, eqs. (16) and (17) in discrete form can be expressed as: 
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where DrN–1 = RN – RN–1，N = 1, 2, … Introducing two variables cj = Drj–1Drj and  
dj = Drj–1 + Drj, the two equations above can then be transformed into the following form: 
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Thus, the set of eqs. (28), (29), and (25)-(27) are the other finite difference scheme 
of the set of partial differential eqs. (16)-(20) for the spherical solidification. 

Numerical results and discussion 

For Ste = 0.2 and the boundary condition T(r = 1, t) = f(t) º 0, fig. 2(a) shows the 
evolution of the moving interface as a function of time for the outward spherical solidifying 
problem, and fig. 2(b) shows the temperature distribution in the phase change domain when 
the moving interface moves to R(t) = 1.2, 1.5, and 1.8 , respectively. Here, the constant space 
step size Dr = 0.001 is used for the fixed-space-step method and the constant time step size  

 
Figure 2. Evolution of the moving interface and temperature distributions in the phase change zone for 
two numerical methods for outward spherical solidification with Ste = 0.2 and f(t) º 0; (a) evolution of 
the moving interface, (b) temperature distributions 
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Dt = 0.001 is used for the fixed-time-step method. It can be seen from tab. 2 that the results 
obtained from the two methods agree well with those obtained by the enthalpy method and 
the perturbation method [10], and the absolute error among the results is less than 0.001. Thus 
one may conclude that the fixed-space-step method and the fixed-time-step method are feasi-
ble and effective to solve the spherical solidifying problem. 

Table 2. Comparison of the position of the moving interface for two numerical methods  
for outward spherical solidification with Ste = 0.2 and f(t) º 0 

t Fixed-space-step Fixed-time-step Enthalpy [10] Perturbation [10] 

0.200 1.2540 1.2537 1.2547 1.2547 

0.400 1.3504 1.3503 1.3509 1.3511 

0.600 1.4216 1.4216 1.4222 1.4223 

0.800 1.4800 1.4801 1.4805 1.4806 

1.000 1.5303 1.5304 1.5309 1.5310 

1.200 1.5750 1.5751 1.5756 1.5756 

1.400 1.6154 1.6156 1.6160 1.6160 

1.600 1.6525 1.6527 1.6531 1.6531 

1.800 1.6868 1.6870 1.6874 1.6875 

2.000 1.7190 1.7192 1.7195 1.7196 

 
In the case of Ste = 0.2 and the boundary condition T(r = 1, t) = f(t) = –t2, fig. 3(a) 

shows the evolution of the moving interface as a function of time for the outward spherical 
solidifying problem, and fig. 3(b) shows the temperature distribution in the phase change do-
main when the moving interface moves to R(t) = 1.2, 1.6, and 2.0, respectively. For this test 
example, the size of the phase change domain is increasing linearly as time goes on after  
t = 1.5, namely the velocity of the moving interface as a function of time becomes almost 
constant after a time step. On the other hand, the temperature in the phase change domain is 

 
Figure 3. Evolution of the moving interface and temperature distributions in the phase change zone for 
two numerical methods for outward spherical solidification with Ste = 0.2 and f(t) = –t2; (a) evolution of 
the moving interface, (b) temperature distributions 
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changing rapidly, and the temperature difference increases from about 2  to 5.2  when the 
moving interface moves from R(t) = 1.6 to R(t) = 2.0, as shown in fig. 3(b). Obviously, this 
phenomenon is caused by the boundary condition T(r = 1, t) = f(t) = –t2. 

Conclusions 

By considering the needed time corresponding to the forward-moving constant dis-
tance of the moving interface and the forward-moving distance of the moving interface corre-
sponding to the constant time step each time, we present the fixed-space-step method and the 
fixed-time-step method, respectively. Four finite difference schemes are established for solv-
ing Stefan problems. The evolution of the moving interface and the temperature distribution 
in the phase change domain are simulated numerically for melting in the half-plane and out-
ward spherical solidification. Numerical experiment results show that the numerical results 
obtained from these two methods are in good agreement for the different test examples, and 
these two methods can be applied to solve two Stefan problems in engineering practice. 
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