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Higher-order boundary value problems have been widely studied in thermal sci-
ence, though there are some analytical methods available for such problems, the 
barycentric rational interpolation collocation method is proved in this paper to 
be the most effective as shown in three examples.  
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Introduction 

The interpolation collocation method as a numerical method to solve differential 
equations has many merits, such as simple calculation and convenient program [1-4]. In nu-
merical analysis, interpolation nodes sometimes are not free to be chosen, especially for the 
interpolation problems with equidistant nodes, for such case Lagrange polynomial interpola-
tion is unstable, but the piecewise polynomial interpolation can be used, such as the spline in-
terpolation, it can overcome the numerical instability [5]. Sometimes the precision of rational 
function interpolation is higher than that of the polynomial interpolation, and it can effectively 
overcome the instability problems. In a rational function space Rm,n, its elements are the ra-
tional functions of the polynomials. The following theorem shows that the rational function 
interpolation problem must have a solution [6].  

Theorem 1 [6]. Suppose {(xj, fj),  j = 0, 1,…, n)} are n + 1 real number pairs, xj is 
different from each other. {uj, j = 0, 1,… , n} are n + 1 real numbers, we have the following. 

(1) If uk ¹ 0, there has rational function r(x) ∈ Rm,n: 
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(2) Otherwise, the rational function of any interpolation real number pairs, 
{(xj, fj), j = 0, 1, …, n)}, can be expressed as barycentric interpolation. 
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In this paper, we select suitable points as interpolation nodes, use barycentric ration-
al interpolation collocation method (BRICM) [7-9] to solve higher-order boundary value 
problems (BVP) in the form: 
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The barycentric rational collocation method has been proved to be effective to solve 
non-linear high-dimensional Fredholm integral equations of the second kind [10] and non-li-
near parabolic partial differential equations [11].  

Barycentric rational interpolation collocation method 

According to the ideas of the collocation method, all-order derivatives of function at 
nodes can be approximated as linear weighted sum of the function value at nodes. Consider 
the function u(x) which is defined in interval [0, 1], the values of function u(x) at nodes are  
ui = u(xi), i = 1, 2, …, n, and all-order derivatives of u(x) at the nodes can be expressed as the 
linear weighted sum of the function value [7-9]: 
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Written in matrix form is u(m) = D(m)u, where ( ) ( )( ) ( )
1 2[ , ,..., ]m mm m T

nu u u u= is the col-
umn vector of the m order derivatives of unknown function at nodes, D(m) is the m order dif-
ferential matrix of unknown function, the elements of ( )m

ijD are the weighted coefficient.  
Barycentric interpolation primary function is denoted by Lj(x), the barycentric inter-

polation u(x) can be expressed as:  
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So, the first order and second order derivatives of u(x) can be expressed, respective-
ly, as:  
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Barycentric interpolation primary function is:  
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where wj is barycentric interpolation weight, defined as:  
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The index set Jk = {i ∈ I, k – d £ i £ k} is based on the distribution of interpolation 

nodes and the choice of d. Multiplying x – xi(i ¹ j) at both sides of (3), we obtain: 
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For simplicity, we introduce a new variable s(x) defined as:  
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Calculating derivative with respect to x  at both sides of eq. (4), we get: 
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we know Lj(xi) = 0(j ¹ i),so we can get: 
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If i = j, 1 ( ) 1n
j jL x=Σ = . Calculating derivative with respect to x at both sides, we get 
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of barycentric interpolation is [2]: 
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In view of eq. (1), let interval [0, 1] be dispersed as 0 = x1 < x2 < … < xn = 1, let u1, 
u2, …, un as the values of function u(x) at disperse nodes x1, x2, …, xn, using the barycentric 
rational interpolation collocation can get approximate function u(x): 
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Taking eq. (6) into eq. (1), we can get: 
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Let eq. (7) accurately be established at disperse nodes, we can get n equations: 
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Write eq. (9) in matrix form:  
 LU F=  (10) 

There 
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Taking eq. (6) into initial conditions, we have: 
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On the basis of ordinary differential equation theory (Picard iterative method),  
∀ f(x) ∈ C [a, b], eq. (1) has unique solution in [a, b]. 

Theorem 2: Suppose u(x) is the exact solution of eq. (1), if un(x) is the numerical so-
lution of eq. (1), we have Lun(xk) = f(xk) (k = 1, 2,…, n), and lim ( ) ( ).nn

u x u x
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The proof is straightforward and it is not written here for simplicity.  

Numerical experiment 

In this section, three numerical examples are studied to demonstrate the accuracy of 
the present method.  

Example 1. Consider the following fifth-order boundary value problem [2, 3]: 
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The exact solution is uT(x) = (1 – x)ex. The numerical results are shown in tab. 1 and 
fig. 1. 

Table 1. Numerical results for Example 1 

 
Figure 1. Present numerical method for Example 1, the left picture is the exact solution and numerical 
solution, the right picture is the absolute error  

Example 2. Consider the eighth-order boundary value problem [4]: 
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The exact solution is uT(x) = (1 – x)ex. The numerical results are shown in tab. 2 
and fig. 2. 

x uT(x)  Present method  Decomposition method [2] B-spline [2] Variational iteration [3] 

x uT(x) Absolute error Absolute error Absolute error Absolute error 

0 0.0000 2.1·10–12 0.000 0.000 0.000 

0.1 0.0995 5.6·10–12 3·10–11 8·10–3 1.077·10–4 

0.2 0.1954 3.4·10–11 2·10–10 1.2·10–3 1.077·10–4 

0.3 0.2835 6.7·10–11 4·10–10 5·10–3 2.477·10–4 

0.4 0.3580 9.3·10–11 8·10–10 3·10–3 3.729·10–4 

0.5 0.4122 1.0·10–10 1.2·10–9 8·10–3 4.202·10–4 

0.6 0.4373 9.8·10–11 2·10–9 6·10–3 3.643·10–4 

0.7 0.4229 7.7·10–11 2.2·10–9 0 2.364·10–4 

0.8 0.3561 4.5·10–11 1.9·10–9 9·10–3 1.158·10–4 

0.9 0.2214 1.5·10–11 1.4·10–9 9·10–3 8.760·10–5 

1.0 0 0 0.000 0.000 0.0000 
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Table 2. Numerical results for Example 2 

 
Figure 2. Present numerical method for Example 2, the left picture is the exact solution and numerical 
solution, the right picture is the absolute error  

Example 3. Consider the eighth-order boundary value problem [4]. 
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The exact solution is ( ) (1 )e .x
Tu x x= −  The numerical results are shown in tab. 3 

and fig. 3. 

Table 3. Numerical results for Example 3 

Conclusions and remarks 

In this paper, we use the barycentric rational interpolation collocation method [7-9] 
to solve higher-order BVP. The numerical results demonstrate that the method is quite accu-

x uT(x) Present method Present method Method in [4] 

x uT(x) u21(x) Absolute error Absolute error 

0.25 0.9630 0.9630 1.4·10–10 1.0·10–7 

0.5 0.8244 0.8244 8.4·10–9 3.1·10–6 

0.75 0.5293 0.5293 3.2·10–8 5.5·10–5 

1.0 0 0 2.3·10–8 4.2·10–4 

x uT(x) Present method Present method Modified decomposition method [4] 

x uT(x) u21(x) Absolute error Absolute error 

0.25 0.9630 0.9630 2.1·10–7 7.27·10–5 

0.5 0.8244 0.8244 2.9·10–7 1.025·10–4 

0.75 0.5293 0.5293 2.0·10–7 7.24·10–5 
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rate and efficient for linear higher-order BVP. It is worthy to note that this method can be 
generalized to higher order BVP. All computations can be performed using some mathemati-
cal software, making the method much more attractive.  

 
Figure 3. Present numerical method for Example 3, the left picture is the exact solution and numerical 
solution, the right picture is the absolute error  
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