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Polymeric composite nanofibers have been fabricated simply by the electrospin-
ning of polymeric solutions containing a wide variety of suspended inclusions 
such as nanoparticles and nanotubes. The electrospinning process for fabrication 
of composite nanofibers is a multi-phase and multi-physics process. In this paper, 
a modified particle suspension model for electrospinning nanosuspensions is es-
tablished to research the electrospinning process. The model can offer in-depth 
insight into physical understanding of the complex process which can not be fully 
explained experimentally. 
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Introduction 

Electrospinning has attracted much attention in recent years due to its versatility and 
potential for applications such as photoelectric [1], electronics [2], catalysis [3], drug delivery 
[4, 5], and scaffolds for tissue engineering [6-8]. Polymeric composite nanofibers [9] have al-
so been fabricated by the electrospinning of polymeric solutions containing a wide variety of 
inclusions such as nanoparticles [10-12] and nanotubes [13-16]. The electrospinning process 
for fabrication of composite nanofibers is a multi-phase and multi-physics process. The elec-
trospinning process has been studied experimentally and theoretically [17-20]. In recent years, 
many experimental studies have been conducted to understand the electrospinning process 
and a number of mathematical models have been developed for research mechanical mecha-
nism of the process [21-25].  

Particle suspension occurs in a wide variety of natural and man-made materials. Par-
ticle migration in suspension flows is important in a variety of scientific and engineering ap-
plications such as the transport of sediments, chromatography, and composite materials pro-
cessing [26]. Particle shape plays a pivotal role in determining the distributions of particle 
orientation, concentration, and velocity in suspension flows. Slender particle is different from 
spherical particle, since it is orientable while the latter is isotropic. Slender particle suspension 
flow always show non-isotropic properties, such as huge extensional viscosity, the first nor-
mal stress difference and the second normal stress difference. 

The distributions of particle orientation, concentration, and velocity are main topics 
in the previous investigation of particle suspensions [27]. Leighton and Acrivos [28] proposed 
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a particle diffusive model, in which the driving force perpendicular to the shear plane is sup-
posed to result from the effects of spatially varying interparticle interaction and effective vis-
cosity. Brady presented a suspension balance model [29], which is based on the conservation 
of mass and momentum for both particle and suspension phases. Phillips et al. [30] adopted 
Leighton’s scaling arguments and proposed a diffusive flux equation to describe the time evo-
lution of the solid concentration based on the two-body interaction model. The particle flux is 
considered to be a balance between a contribution due to spatially varying collision frequen-
cies and an opposite contribution due to spatially varying viscosity. Koh et al. [31] measured 
the velocity and concentration profiles for the flow of concentrated suspensions, and found 
that the concentration becomes more uniform with increasing flow rate and with decreasing 
the average concentration. Olson [32] investigated the distribution of fiber concentration and 
observed a maximum peak of concentration between the linear and constant concentration re-
gions. Lin and Shen [27] and Lin et al. [33] investigated theoretically and numerically the ori-
entation, concentration and velocity distribution of fibers in the turbulent channel flows. The-
se theoretical and numerical analyses can offer in-depth insight into physical understanding of 
the particle migration in suspension flows which cannot be fully explained experimentally.  

The electrospun solutions for fabrication of composite nanofibers are nanoparticle 
suspensions, and the electrospinning process is a multi-phase and multi-physics process. In 
this paper, a modified particle suspension model for electrospinning nanosuspensions, which 
plays a pivotal role in determining the nanofiber quality, is established to research the electro-
spinning process. The model can offer in-depth insight into physical understanding of the 
complex process which can not be fully explained experimentally, and can be used to opti-
mize and control the electrospinning parameters. 

Particle suspension model 

Instantaneous equation of particle suspension flow 

The electrospinning process for fabrication of composite nanofibers is a particle 
suspension flow. The particle suspension flow is assumed to be an incompressible and steady- 
-state. The governing equations of particle suspension are derived by considering balance 
equations for both the suspension as a whole and for the particle phase [29]. In the proceeding 
sections, conservation of mass and momentum for the particle suspensions can be obtained by 
averaging those quantities over all phases in a unit volume, V, as shown in fig. 1.  

Spherical particle suspension flow 

The instantaneous continue and momentum equations of spherical particle suspen-
sion flow in electrospinning process are [22]: 
– continue equation  
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Figure 1. Schematic representation of particle suspension flow in electrospinning process; (a) spherical 
particle, (b) slender particle 

where p is the pressure, m – the dynamic viscosity of the particle suspension flow, qe – the 
electric charge, E – the electric field, and ep – the material module. 

Slender particle suspension flow 

The instantaneous continue and momentum equations of slender particle suspension 
flow in electrospinning process are as follows [22, 34]: 
– continue equation 

 0i

i

u
x
∂
∂

＝  (3) 

– momentum equation 
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where r is the density of the suspending flow, eij – the tensor of rate of strain, and mf – the ap-
parent viscosity of the suspension. Also 

 
+

=
2

ji

j i
ij

uu
x x

ε

∂∂
∂ ∂

 (5) 

 
3π=

6ln(2 )f
n l

r
µµ  (6) 

where n is the number of slender particles per unit volume, l – the slender particle half-length, 
and r – the slender particle aspect-ratio which is the ratio of length to diameter of a slender 
particle. The aij and aijkl are the second- and fourth-orientation tensor of a slender particle, and 
can be defined, according to the following model, respectively, [35]: 
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 = ( )dij i ja q qψ∫ q q  (7) 

 = ( )dijkl i j k la q q q qψ∫ q q  (8) 

where qi is a unit vector parallel to the slender particle’s axis, y(q) – the probability distribu-
tion function for slender particle orientation at any positions. 

Based on the definition of y(q), y(q) satisfies the equation of conservation: 
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where jq  is the slender particle angular velocity and given as [36]: 

 i ij j ij j kl k l iq q q q q qω λε λε= − + −  (10) 

where wij is the vorticity tensor. 
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Equation for turbulent slender particle suspension 

The instantaneous velocity, pressure, tensor of rate of strain, and orientation tensor 
as sum of the mean and fluctuation quantities can be written: 

 , , , ,i i i ij ij ij ij ij ij ijkl ijkl ijklu u u p p p a a a a a aε ε ε′ ′ ′ ′ ′= + = + = + = + = +  (13) 

The ija′  and ijkla′  are dependent on the rotation angle of slender particle, ijε ′  is de-
pendent on the spatial position of slender particle. Therefore, the correlations of kl kla ε′ ′  and 

ijkl kla ε′ ′  equal to zero. Substituting eq. (13) into eq. (4) and taking the average yields: 
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Equation (14) is the mean motion equation of turbulent slender particle suspensions.  

Equation for the particle phase 

According to the suspension balance model [29], the conservations of mass and 
momentum for the particle phase are obtained by averaging the equations of conservation of 
mass and Cauchy’s equations of motion over the particles.  
– continue equation  
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– momentum equation 

 e

d
( )g ( )

d
p

p p p p pq
t

ρ φ ρ ρ φ ε= − + +∇ + + ∇
u

F E E Eτ  (16) 

where rp is the particle density, pu  – the particle-phase average velocity, g – the gravitational 
acceleration, f – the volume fraction of the particle, and E – the electric field. The Fp is the 
mean Stokes drag force on any particle in the suspension flow, which may be modeled as 
analogous to the drag in sedimentation and set: 

 1= 6π ( ) ( )p pn afµ φ −− −F u u   (17) 

where a is the dimension parameter of the particles. The hindered setting function, f(f), repre-
sents the mean mobility of the particle phase, and thus f(f)–1 is the mean resistance, which can 
be determined by the sedimentation hindrance function described in [37]. 
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where fm is the maximum packing particle volume fraction, a – the parameter given by Rich-
ardson and Zaki [37] as α = 2 – 5, tp – the particle contribution to the bulk stress, and is sug-
gested by Morris and Brady [38] for shear flows: 
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where Kp and Ks are rheological fitting parameters, with Kp = 0.75 and Ks = 0.1 to match 
experimental data [39]. The γ  is the shear rate and gives the stress its dependence on the 
strength to the local flow. The Q is the tensor parameter and captures the anisotropy of the 
normal stress with the following form [40] 
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Finite volume method 

The finite volume method is widely used to solve convective-diffusive problems 
mainly due to its conservative property and its lucid physical interpretation [41]. In the finite 
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volume method, for instance, in the most popular SIMPLER algorithm [42], a staggered mesh 
in which the pressure nodes are located between the velocity nodes must be used to avoid a 
checkerboard type pressure field, so that one ends up with four different sets of control vol-
umes: three for the three velocity components, one for the pressure and any other variables 
(i. e. temperature) to be solved.  

All field variables of the equations can be written as a general form F. The integrals 
of these field variables can be evaluated, with the help of an interpolation scheme to obtain 
the following discrete equation: 

 t t t t 0 t t
C C nb nb C C= ta a a bΦ Φ Φ −∆+ +∑  (23) 

where the subscript C denotes the current node, the subscript nb represents all neighboring 
nodes to C, the superscript t indicates the currents time, Dt is the time step, and the coeffi-
cients are found from the grid geometry and the current kinematics. 

The discrete equation for pressure is obtained by discretizing the continue equation [42]: 

 t t t t t
C C nb nb=a p a p b+∑  (24) 

According to the particle suspension model presented, the finite volume method will 
be used in the solver, and the SIMPLEC algorithm enforces mass conservation and achieves 
pressure-velocity coupling. In future, we will apply computational fluid mechanics to simu-
late the jet numerically for researching the effect of slender particle on the electrospinning 
process.  

Conclusion 

In this paper, a modified particle suspension model, derived from Lin’s turbulent fi-
ber suspension model [22] is presented to research mechanical mechanism of the electrospin-
ning process for fabrication of composite nanofibers. The model can offer in-depth insight in-
to physical understanding of the complex electrospinning process, and be used to optimize 
and control the electrospinning parameters. Based on the model, numerical simulation and 
experiment verification will be carried out to research the effect of slender particle on the 
electrospinning process in future. The model will be further ameliorated according to numeri-
cal results and experimental data. 
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