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A thermal problem can be always modeled using an integral equation. This paper
uses the Monte Carlo method based on the simulation of a continuous Markov
chain to solve Fredholm integral equations of the second kind. Some examples
are given to show the efficiency of the present work.

Key words: Monte Carlo method, Fredholm integral equation, Markov chain

Introduction

The Monte Carlo method is preferable for solving both high-dimensional multiple
integrals and large sparse systems of linear algebraic equations [1-3]. Recently, Farnoosh and
Ebrahimi [4] employed Monte Carlo method based on the simulation of a continuous Markov
chain for solving Fredholm integral equations of the second kind. In this paper, we will con-
sider the following Fredholm integral equation of the second kind:

u(x) = f(x)+/1'1[k(x,t)u(t)dt, 0<x<1 )

where the function f(x) € Lj0,1], the kernel k(x, t) €L([0, 1] x [0, 1]) is given and
u(x) e L,[0,1] is the unknown to determined.

In eg. (1), u(x) can be considered as temperature distribution along a fin. This paper
uses a continuous Markov chain with state space [0, 1] for simulation.

Overview of the method

Equation (1) may be written in the operational form:

u(x) = f(x) + (Ku)(x), )
where
(Ku)(x) = j K(x,tu(t)dt, 3)

proceeding recursively, we obtain:
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KI(Ku)1(x) = (K2u)(x) = [ [k bk (e tu(t)dtdt, @)
KI(K™u)](0) = (K"u)() = [k(x,t, )K" u(t, ), 5)
Let us assume that:
|K|=gggj|k(x,t) dt <1 (6)
[01 0

under this assumption, we can solve eq. (1) by applying the following recursive equation:
um ) =(KuH)+ F(x), =12 ()

if u”(x) = 0 and K° = 0 then from eq. (7), we obtain:
U™ (x) = £ )+ (KF)(X) +--+ (K f)(><)=i0(Km f)(x) @)
It is well known that:
mum’(x)=mzn;(}<mf)(x)=u(x) 9)

Continuous Markov chain Monte Carlo method
Consider the continuous Markov chain:

P=[IPO Y (10)
with state space [0,1], satisfying:
jP(x, y)dy =1 (11)
and 0
[ bt =1 (12)

where p(x) and P(x, y) are the initial and the transition densities of the Markov chain
(10)-(12), respectively.

Define the weight function, W,,, for Markov chain, (10)-(12) using recursion formu-
la:

Wm :Wm—l k(mel’ Xm) ) m :112"” (13)
P(Xm—l’ Xm)
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where Wy = 1.
Define the following random variable:
r[h]=> W, f(x,) (14)
m=0
associated with the sample path:
Xg =X —> X, = oo > X, (15)

where n is a given integer number.

Definition 1. The inner product of two function h(x) and u(x) is defined by:
1
{hu)= j h(x)u(x)dx (16)
0

Theorem 1. The 1rmlthematlcal expectation value of random variable 7] h] is equal
n+

to the inner product ¢h, u™Dy i e
E(7,[h]) = (h,u™) (17)
Proof 1. Each path Xo_x;_X>_,. Xn, Will be realized with probability:
P, X+ %,) = P(%g, )P (%, %) -+ P(%, 1, %) (18)

While simulating the Markov chain (10)-(12), since the random variable I3[ h] is de-
fined along path Xo_X;_Xs_,.. Xn, We have:

E(IND = [ [+ [ 7, I0IP 0, % )P, %)+ P, 5, %, )y, -+, (19)

ot—

which, together with egs. (13) and (14), gives:
n 11 1 p
E(7-,[h]) = E[Zwm f (xm)} =[] [ 2 @ (x,) p(x, ), ---dlx, (20)
m=0 00 0 m=0

where
D =KX, X JK (X, X ) K (X4 X,) (21)
and

¥ = P(Xm’xm+1)"'P(Xn—1’Xn) (22)

1
Using the property jP(x, y)dy =1, the eq. (20) can be written:
0

n 1 n

E(7,[h]) = ZH qu)f(x Ydx,dx, - --dx, (23)

thus, taking into account egs. (5), (8), and (16), we obtain:
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E(7,I0]) = (h(0), (K™ £)()) = (h(),u™ (x)) (24)

Computational procedure for estimating (h, u™+")
To estimate (h, u(””)),we consider a continuous Markov chain with transition kernel:

P(x,y) = p(x)3(y - x) +[1- p(x)]g(y), xye[01] (25)

where 6(y — x) is the Dirac's delta function at x, g(x) — a probability density on [0,1] and
p(x) — a function such that 0 < p(x) < 1 and:

_9() 4
Il p(X)

Step 1. Choose any integer n and then we simulate N independent random paths of
length n:

%P >x® 5% 5. 5x®,  s=12... N (26)
from the Markov chain (25).

Algorithm 1

1. Input initial data: the number of random paths N, the length of Markov chain n,
the function p(x),the probability density g on [0,1].

2. Fors:=1to N do step 2.1.

2.1. Perform one random path:

2.1.1. Give xpe [0, 1]

2.1.2.Form:= 0ton-1do

2.1.2.1. Generate an uniformly distributed random number z € (0, 1);

2.1.2.2.If p(x,*®) > r then, calculate x_,* =x ©;

else, generate x_, from probability density g
2.1.3. End of the random path.
3. Output u(Xg).
4. End of the Algorithm 1.

Step 2. We also define the random variable 7~ *’[h] on the path (26) such that:

oM =S W, f(x,) 27)

where

K (%, 69K (X, %@ )k (x,,©, %)
P(%, )P (x®, %9 )P(x 0, xO)

(ARES m=12,-, (28)

and W, =1.



Tian, Y.: Markov Chain Monte Carlo Method to Solve Fredholm Integral Equations
THERMAL SCIENCE: Year 2018, Vol. 22, No. 4, pp. 1673-1678 1677

Step 3. Finally evaluate the sample mean:

,[h= %irﬁ[h] ~(hu™) (29)

s=1

Discussion of the numerical experiments

To give a clear overview of the present Monte Carlo (MC) method, the following
examples will be considered and the solution of which is to be obtained.

Example 1. Consider the following equation:

u(x) =~/x - TM u(t)dt (30)

for which the exact solution is u(x) = 2/3 x2.
The result obtained for u(x) with N = 1000, « = 2.02, and = 1 are presented in tab.

1 and fig. 1.

Table 1. N = 1000, n = 60

0.7 T T r - T T r -
X MC Exact 3
0.65 .
0.1 0.2107 0.2108 06 | .
0.2 0.2981 0.2981 0.55+ “
03 0.3650 0.3651 05 L
0.4 0.4216 0.4216 045+ . R
04 =] i 1
05 0.4712 0.4714 03 . Exact solution
0.6 0.5163 0.5164 03 L o
0.7 0.5578 0.5578 0.25|
[ ] ' M M ' I I ' 1
08 0.5963 0.5963 0201 02 03 04 05 06 07 08 09 1
0.9 0.6325 0.6325
Figure 1. The solution of Example 1 with
1.0 0.6665 0.6667 MC in case N = 1000, n = 60

Example 2. Consider the following equation:
1
u(x) = 0.9x + j 0.5x%t2u(t)dt (31)
0

for which the exact solution is u(x) = x°.
The result obtained for u(x) with N = 100, o = 2.02, and 8 = 1 are presented in tab. 2
and fig. 2.

Example 3. Consider the following equation:
5x 1t
u(x) =—+=| xt u(t)dt 31
(=5 +5]xtu (31)
for which the exact solution is u(x) = x.

The result obtained for u(x) with N = 1000, « = 2.05, and = 1 are presented in tab.
3 and fig. 3.
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Table 2. N =100, n =55 1.4
X MC Exact 12} |
0.1 0.01009 0.01 . )
0.2 0.03979 0.04
0.3 0.08949 0.09 08| *
0.4 0.15913 0.16 06} 8 ]
0.5 0.25177 0.25 04l " |
0.6 0.35914 0.36 -
0.7 0.48278 0.49 021 . e ]
8 T . ) ) UElxac.t s:oluholn
08 0.65513 0.64 0 01 02 03 04 05 06 07 08 09 1
0.9 0.81568 0.81
Figure 2. The solution of Example 2 with MC
10 1.01747 1.00 incase N=100,n=55
Table 3. N =1000, n =30 1
X MC Exact 0.9 @
0.1 0.0990 0.1 08 -
0.7 ]
0.2 0.1985 0.2
0.6 + ]
0.3 0.2974 0.3 05| . .
04 0.3960 0.4 0.4 - w | ;Exac.t solution |
0.5 0.4902 0.5 03 .
0.6 0.5953 0.6 02F =
0.7 0.7097 0.7 0.1z
0 L L " L L " " L
08 0.7996 08 01 02 03 04 05 06 07 08 09 1
0.9 0.8884 0.9
Figure 3. The solution of Example 3 with MC
1.0 0.9484 10 in case N = 1000, n =30
Conclusion

The present study, successfully applied the continuous Markov chain Monte Carlo
method for the solution of Fredholm integral equations of the second kind. From the numeri-
cal examples it can be seen that the proposed Monte Carlo method is efficient and accurate to
estimate the solution of Fredholm integral egs. (1).
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