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A thermal problem can be always modeled using an integral equation. This paper 
uses the Monte Carlo method based on the simulation of a continuous Markov 
chain to solve Fredholm integral equations of the second kind. Some examples 
are given to show the efficiency of the present work. 
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Introduction 

The Monte Carlo method is preferable for solving both high-dimensional multiple 
integrals and large sparse systems of linear algebraic equations [1-3]. Recently, Farnoosh and 
Ebrahimi [4] employed Monte Carlo method based on the simulation of a continuous Markov 
chain for solving Fredholm integral equations of the second kind. In this paper, we will con-
sider the following Fredholm integral equation of the second kind: 

1

0

( ) ( ) ( , ) ( )d ,  0   1u x f x k x t u t t xλ= + ≤ ≤∫ (1) 

where the function f(x) Î L2[0,1], the kernel k(x, t) ÎL2([0, 1] × [0, 1]) is given and 
2( ) [0,1]u x L∈  is the unknown to determined.  
In eq. (1), u(x) can be considered as temperature distribution along a fin. This paper 

uses a continuous Markov chain with state space [0, 1] for simulation.  

Overview of the method 

Equation (1) may be written in the operational form: 

( ) ( ) ( )( )u x f x Ku x= + , (2) 

where 
1

0

( )( ) ( , ) ( )dKu x K x t u t t= ∫ , (3) 

proceeding recursively, we obtain: 
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[( )]( ) ( )( ) ( , ) ( , ) ( )d dK Ku x K u x k x t k t t u t t t= = ∫ ∫  (4) 

  
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1 1
1 1 1

0

[( )]( ) ( )( ) ( , ) ( )dn n n
n n nK K u x K u x k x t K u t t− −
− − −= = ∫  (5) 

Let us assume that: 

 


1

0[0,1]

| | sup | ( , ) |d 1K k x t t= <∫  (6) 

under this assumption, we can solve eq. (1) by applying the following recursive equation: 

 ( 1) ( ) ( )( ) ( ), 1,2,n nu x Ku x f x n+ = + =   (7) 

if u(0)(x) = 0 and K0 ≡ 0 then from eq. (7), we obtain: 

 ( 1)

0
( ) ( ) ( )( ) ( )( ) ( )( )

n
n n m

m
u x f x Kf x K f x K f x+

=

= + + + = ∑
 (8) 

It is well known that: 

 ( )

0
lim ( ) lim ( )( ) ( )

n
n m

n n m
u x K f x u x

→∞ →∞
=

= =∑  (9) 

Continuous Markov chain Monte Carlo method 

Consider the continuous Markov chain: 

 || ( , ) ||P P x y=  (10) 

with state space [0,1], satisfying: 

 
1

0

( , )d 1P x y y =∫  (11)  

and 

 
1

0

( )d 1p x x =∫  (12) 

where p(x) and P(x, y) are the initial and the transition densities of the Markov chain  
(10)-(12), respectively. 

Define the weight function, Wm, for Markov chain, (10)-(12) using recursion formu-
la: 

 1
1

1

( , ) , 1,2,
( , )

m m
m m

m m

k x xW W m
P x x

−
−

−

= =   (13) 



Tian, Y.: Markov Chain Monte Carlo Method to Solve Fredholm Integral Equations 
THERMAL SCIENCE: Year 2018, Vol. 22, No. 4, pp. 1673-1678 1675 

where W0 = 1. 
Define the following random variable: 

 
0

[ ] ( )
n

n m m
m

h W f x
=

Γ = ∑  (14) 

associated with the sample path: 
 0 1 2 nx x x x→ → → →

 (15) 

where n is a given integer number. 

Definition 1. The inner product of two function h(x) and u(x) is defined by: 

 
1

0

, ( ) ( )dh u h x u x x= ∫  (16) 

Theorem 1. The mathematical expectation value of random variable Гn[h] is equal 
to the inner product áh, u(n+1)ñ, i. e.: 

 ( 1)( [ ]) , n
nE h h uΓ +=  (17) 

Proof 1. Each path x0→x1→x2→…xn, will be realized with probability: 

 0 1 0 1 1 2 1( , , , ) ( , ) ( , ) ( , )n n nP x x x P x x P x x P x x−= 
 (18) 

While simulating the Markov chain (10)-(12), since the random variable Гn[h] is de-
fined along path x0→x1→x2→…xn, we have: 

 
1 1 1

0 1 1 2 1 0 1
0 0 0

( [ ]) [ ] ( , ) ( , ) ( , )d d dn n n n nE h h P x x P x x P x x x x xΓ Γ −= ∫ ∫ ∫    (19) 

which, together with eqs. (13) and (14), gives: 

 
1 1 1

0 1
0 00 0 0

( [ ]) ( ) ( ) ( )d d d
n n

n m m m m n
m m

E h E W f x f x p x x x xΓ ΦΨ
= =

 
= = 

 
∑ ∑∫ ∫ ∫   (20) 

where 
 0 1 1 2 1( , ) ( , ) ( , )m mk x x k x x k x xΦ −= 

 (21) 
and 
 1 1( , ) ( , )m m n nP x x P x xΨ + −= 

 (22) 

Using the property 
1

0

( , )d 1P x y y =∫ , the eq. (20) can be written: 

 
1 1 1

0 1
0 00 0 0

( [ ]) ( )d d d
n n

n m n
m m

E h f x x x xΓ Φ
= =

= ∑ ∑∫ ∫ ∫   (23) 

thus, taking into account eqs. (5), (8), and (16), we obtain: 
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 ( 1)( [ ]) ( ), ( )( ) ( ), ( )m n
nE h h x K f x h x u xΓ += =  (24) 

Computational procedure for estimating áh, u(n+1)ñ 

To estimate áh, u(n+1)ñ,we consider a continuous Markov chain with transition kernel: 

 [ ]( , ) ( ) ( ) 1 ( ) ( ), , [0,1]P x y x y x x g y x yρ δ ρ= − + − ∈  (25) 

where d(y – x) is the Dirac's delta function at x, g(x) – a probability density on [0,1] and  
r(x) – a function such that 0 < r(x) < 1 and: 

1

0

( ) d
1 ( )

g x x
xρ

< ∞
−∫  

Step 1. Choose any integer n and then we simulate N independent random paths of 
length n: 

 ( ) ( ) ( ) ( )
0 1 2 , 1,2, ,s s s s

nx x x x s N→ → → → =   (26) 

from the Markov chain (25). 

Algorithm 1 
1. Input initial data: the number of random paths N, the length of Markov chain n, 

the function r(x),the probability density g on [0,1]. 
2. For s: = 1 to N do step 2.1. 

2.1. Perform one random path: 

2.1.1. Give x0 Î [0, 1]  

2.1.2. For m: =  0 to n – 1 do  

2.1.2.1. Generate an uniformly distributed random number τ Î(0, 1); 

2.1.2.2. If ( )( )s
mxρ τ> then, calculate ( ) ( )

1
s s

m mx x+ = ; 

else, generate ( )
1

s
mx +  from probability density g  

2.1.3. End of the random path.  
3. Output u(x0). 
4. End of the Algorithm 1. 
Step 2. We also define the random variable ( )[ ]s

n hΓ  on the path (26) such that: 

 ( ) ( )

0
[ ] ( )

n
s s

n m m
m

h W f xΓ
=

= ∑  (27) 

where 

 
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
0 1 1 2 1( )
( ) ( ) ( ) ( ) ( ) ( )

0 1 1 2 1

, , ,
, 1, 2, ,

, , ,

s s s s s s
n ns

m s s s s s s
n n

k x x k x x k x x
W m

P x x P x x P x x
−

−

= =




  
(28) 

and ( )
0 1.sW =  



Tian, Y.: Markov Chain Monte Carlo Method to Solve Fredholm Integral Equations 
THERMAL SCIENCE: Year 2018, Vol. 22, No. 4, pp. 1673-1678 1677 

Step 3. Finally evaluate the sample mean: 

 ( ) ( 1)

1

1[ ] [ ] ,
N

s n
n n

s
h h h u

n
Θ Γ +

=

= ≈∑  (29) 

Discussion of the numerical experiments 

To give a clear overview of the present Monte Carlo (MC) method, the following 
examples will be considered and the solution of which is to be obtained.  

Example 1. Consider the following equation: 

 
1

0

( ) ( )du x x xt u t t= − ∫  (30) 

for which the exact solution is u(x) = 2/3 x1/2. 
The result obtained for u(x) with N = 1000, α = 2.02, and β = 1 are presented in tab. 

1 and fig. 1.  

Table 1. N = 1000, n = 60 

x  MC Exact 

0.1 0.2107 0.2108  

0.2 0.2981 0.2981 

0.3 0.3650 0.3651 

0.4 0.4216 0.4216 

0.5 0.4712 0.4714 

0.6 0.5163 0.5164 

0.7 0.5578 0.5578 

0.8 0.5963 0.5963 

0.9 0.6325 0.6325 

1.0 0.6665 0.6667 
 

 
Figure 1. The solution of Example 1 with  
MC in case N = 1000, n = 60 

Example 2. Consider the following equation: 

 
1

2 2 2

0

( ) 0.9 0.5 ( )du x x x t u t t= + ∫  (31) 

for which the exact solution is u(x) = x2.  
The result obtained for u(x) with N = 100, α = 2.02, and β = 1 are presented in tab. 2 

and fig. 2.  

Example 3. Consider the following equation: 

 
1

0

5 1( ) ( )d
6 2
xu x xt u t t= + ∫  (31) 

for which the exact solution is u(x) = x.  
The result obtained for u(x) with N = 1000, α = 2.05, and β = 1 are presented in tab. 

3 and fig. 3.  
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Table 2. N = 100, n = 55 

x  MC Exact 
0.1 0.01009 0.01 
0.2 0.03979 0.04 
0.3 0.08949 0.09 
0.4 0.15913 0.16 
0.5 0.25177 0.25 
0.6 0.35914 0.36 
0.7 0.48278 0.49 
0.8 0.65513 0.64 
0.9 0.81568 0.81 
1.0 1.01747 1.00 

 

 
Figure 2. The solution of Example 2 with MC 
in case N = 100, n = 55 

Table 3. N = 1000, n = 30 

x  MC Exact 
0.1 0.0990 0.1 
0.2 0.1985 0.2 
0.3 0.2974 0.3 
0.4 0.3960 0.4 
0.5 0.4902 0.5 
0.6 0.5953 0.6 
0.7 0.7097 0.7 
0.8 0.7996 0.8 
0.9 0.8884 0.9 
1.0 0.9484 1.0 

 

 
Figure 3. The solution of Example 3 with MC 
in case N = 1000, n = 30 

Conclusion 

The present study, successfully applied the continuous Markov chain Monte Carlo 
method for the solution of Fredholm integral equations of the second kind. From the numeri-
cal examples it can be seen that the proposed Monte Carlo method is efficient and accurate to 
estimate the solution of Fredholm integral eqs. (1).  
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